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PREFACE

This handb{mk was developed to provide a complete source of the theory and data re-

quired to analyze high-pressure compressible flow systems found in space vehicle ground

support equipment {GSE_.

The material is presented in three sections: Theory. Part i: Application, Pan 11: and

the Appendixes.

Part 1 develops the theoretical equations of fluid flow by derivation. This material is
intended for those who have the time and desire to investigate the theory in depth. Practical

problem solving is treated qualitatively.

Part II presents the theory without the supporting derivations and treats practical prob-

lems quantitatively. It is intended as a ready reference for analysis. A feature of this
section is the inclusion of full-size working charts for the rapid solution of common compress-

ible flow problems.
The Appendixes present a selection of basic thermodynamic data for the five gases of

interest in GSE systems: Air, nitr,gen, oxygen, helium, and hydrogen. The data range is as

wide as possible f.r completeness, and special emphasis has been given to data up to 6000

psig. and from + 150° F to - 100° F.
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ABBREVIATIONS AND SYMBOLS

Unit

abs

aim

Bt.

C

ca|

deg

F
h

ga|

g

gpm

in.

K

4

| e

4w

{I

B

C

C'

C,t

c',,

¢-

c*

ABIIRBIU_llO_

Description Unit

abs_dute Ib

atmospheres Ibf

British thermal units Ibm

centigrade or Ceisiqs rain

eadories psia

degrees psid

Fahrenheit psig

feet R

galh,ns rad

grams scfm

galhms per minute .-arc

inrhes _]ug

Kelvin sld

SYMBOLS

l)e._,'ription _ ',ttts ._ mbol

_rea ft'-' ¢',,

I'lelmhohz functi.n _l - TSt Btu ,',,

flow area at t;_e n,,zzle exit ft _

flow ales a._ n.zzle thr.at ft _ G,

all surface area ft"

_(_*W area in. ! CI,._

,_pecifiq" Hehnh.hz f:ln¢*h,. Blu/Ibm

dimensi.nless ratio, dimem.i.nle_,', c,

(h,4..Hiu'_c,.)

valw- flow ('oeff]t'ient gpm./ipsid) _ c,.,

partian_ .,pen fl.w r',_afl_cienl, dimensionle.,_.

as fra{ ti.n of (], D

discharge coefl_cie,l dimensi.nless

initial value .f C'. a! di nensi.nless

displacement x,,

dimensi.nless rati,), dimeasio_les_ d,,

(W,.;ut IgF,) (c, _

(..mp.n_*nt flow ('oeffwient gpm.,,/(p_idW 2

,,, h,('ity of s.und ft/_,' E

veh. ity .f ,_.und at lhe ft/_e("

t,mditi.ns _,here ,T! _- i E,,,

l_srriptioa

pounds

l_mnd-force

p(mnds-mass

minutes

pounds per squint inch ai_,|'Jte

in'unds per square inch di_rential

pounds per square inch gag_

Rankine

r_t|_t ns

standard cubic feet per militate

set'ond$

abqolute mass unit

standard

Description

a_'lual veh.'ily .f _ound

vehwilv ,d" sound at the

stagnation temperature

'_prcifi¢ heal at constant

pres_llre

r_,,lal spe('ifir heat at

eoP_tant pre_ll;e

•_pecifi¢ heat at constant

volume

mnlal ._peeific heal at

/'OiiSt ant vnlti me

inside diameter of ¢ir_'ular

pipes, and hydraulic

diameter for n,,n('ircular

pipe_

eq:,ivalent sharp-edged

.rifice diameter, ha_ed .n

K,. = 0.60

total energ', .:f a thermo-

dynamic system

energy, .f a m.leeule

I tilts

tt!se_'

f_/se('

Btu/Ibm-°R

Bt u/m,,le!_-°i'{

Btu/lbm.°R

Btu/molelh-°R

ft -_ in.

in.

Htu

Btu
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wt

!

Svtabol

e

F

F,

F,

Fq

F_

Fwt

F_z

FE

/

f,

G

G'

GPM

g'

H

Hi
_il or ht

H,

h

h_
hm

ho

h¢

J

K

K'

K_
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Oescrzptron I 'nits _;vmbo[

unit h,tal energy of a 13tu/Ibm K_

thermodynamic system or dimensionles_

base of the natural

logarithms KE

fi,rce Ibf k

combined NBS flow factor scfm/psia or k_

Ibm/sec-psia

impulse function Ibf

NILS flow factor sefm/psia L

NBS flow factor ibm/sec.psia L,

weight 6,rce in earth gravity lbf

resultant of fluid force acting lIM" Lm_

on the containing wall, in

the opposite direction of LID

flow

flow energy ft-IId

coefftcient of friction, from dimensionless ._f

M",_=/(L/D) (p_/2) M*
average coeffteient of friction dimensionless

coeffleiem of frietkm from dimenshonless _

r =f,(pgSl2), f,---fl4

weight rate of flow per unit lbmlse_-h 2

flow area. w/A m

Cibbs" function cH - TS_ Btu
?¢

volumetric flow rate gel/rain or gpm

acceleration due to gravity ft/_ev 2
a

specific Gibbs" function Btu/Ibm p

conversion factor relating Ibm/slug or

absolute mass units _siugs) ft-lbm/sec z- p_

to the more commonly used Ibf p,

weight units (Ibm). p_

g,= if/ira=wire =y/p=32.174 !'_

total enthalpy Btu

fluid static pressure head ft

fluid pressure head loss due ft P_

to friction and _urbulence

total fluid pressure head ft

specific enthalpy Btu/Ibm

fnid static pressure head in. i'_

molal specific enthalpy Btu/molelh P_

stagnation enthalpy Btu/Ibm P'
PE

film coe_cient of heat transfer Btu/sec-ftz-°R

mechanical energy equivalent ft-lbf/Btu P

to thermal energy.

J = 778.26 ft-lbf/Btu

incompressible component dimensionless

flow coefl_cienL from

AP, = K(pVZ/2)

constant of proportionality variable

flow coet_cient, dimensionless

K, = Ca�X,/l - B'

Desvrlptzorl

tota_ fluid pressure h,sg factor

due to friction, turbulence.

and area change

kinetic energy

specific heat ratio, k=c_/c,

isentropic exponent for real

gases, from I'd*, = constant

(k, _ k for I_'rfect gas )

pipe length

equivalent length of a piping

component or system

pipe length f:,r sonic velocity

at trait

dimensionless pipe length

based on pipe inside

diameter

maeh number. M = ¥1c

dimensionless velocity.

M* = YlV* = Y/c*

molecular weight. ,$f_r--"J_IR

mass

mass flow rate, m ----_/g_

number of moles of a gas

polytropic exp,,nent

absolute pressure

back pressure mbsolute_

critical pressure of a gas

exit pressure (absolute_

( nit.s

dimensionles,_

ft-lbf

dimensionless

dimensionless

ft

ft

ft

dimensionkss

dimensionless

dimensionless

Ibm/moles,

slugs or

Ibf-sec2/ft

slugs/scqr or

lbf-seelft

molelb or

mo]e_m

dimensionless

_bf/ft 2 abs or

psia

Ibf/ft z abs

lbf/ft 2

lbf/ft 2 ab_

pipe exit pressure that would ]bf/ft 2 abs

occur with ,_upersonic ::

shockless flow ¢

back pressure that causes a ]bf/_ 2 abs

normal shock to stand in

the exit. in supersonic pipe

flow

pressure loss Ibf/fi_ abs

redu,'ed pressure (PIP,.) dimensi_mless

total pressure Ibf/ft z

potential energy ft-lbf

ab.,volute pressure (static) Ibf/in3 abs or

psia

NOTE.--AII ,_ubscripts and definitions shown above for

P are applicable to p, which differs only in units.

Q total heat transferred Btu

Q' heat transferred per unit Btu/Ibm

mass

Q rate of heat transfer Btu/sec

q volumetric flow rate ft:_/sec
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,qYm _,_,1 l)escriptt_ m I "nits y; _m bol

/f individual gas constant, ft-lbf/lbm-°R );,

R = R/,_I,,. Ift-lht'/n'H_lelt,-°l_/

|lbm/moletb) Y

uoiversal gas t'onstaut, ft-lbf/molelh-

/_= 1544 °R Z

R, Reynolds number, dimensionless

R. =- DVpl tt z

Rp, hydraulic radius. Rh = _1/ ft

welter] perimeter ot

r pressure ratk}, dimensionless

r = Pz/P, = P'.,/P,

.S total entropy BturR !"

$4 specific gravity, based on air dimensionless y

S. _p_afic _ravit_. based on dimensionless y'
60 ° g water

$CFM _ rate in standmd cubic ft • std/min, or &

feet per minute scfm

s specific emn_py Bm/Ibm-*R

r absolute tempcqrature (aJF+460) _R _i

r_ critical temperature of a gas *R

T, reduced temperature dimensionless
E

t there sec

U total internal energy in a Btu O
system (thermal)

u specific internal energy Btu/Ibm 9.

u., molal specific internal energy Btu/mole_b

F" vehwity ft/sec _t

/? total wdume ft 3

c specific volume, t, = l/'y ft3/lbm /z_

t;., molar specifw wdume ftz/rnole_b

g/ mass. in gravitational units Ibm /xj

I1:% mass per mole Ibm/molejb P

{_'c)_. total thermal capacitance -f Btu/°R

the walls ,}f a gas ves_l r

g/k mechanical w_n'k ft-lbf t,

u' weight rate of flow Ibm/set

u k mechanical w.rk per unit ft-lbf/Ibm (b

I1_ as,,-.

.x displacement or distan."e ft _

x,, initial value ,fix. at C'=C_, dimensioldess _1,.

Y, expansion f_'tor h_r use with dmlensionlegs

o,fi fwe flow x

I)_s{ , iptton ( 'nits

expansion fach,r Ibr use with dimensionless

nozzles or venturi tubes

distance measured perpen- ft

dicular to fl,w direction

c, mapressibility factor fin" a dimenskmless

real gas. Z = Pv/RT

elevationai distance tt

linear acceleration, a = dF/dt ftlsec z

diameter ratio, dtn.,m/d

upstream pipe

compressibility of a fluid

weight density, y= ljv=&p |bin/It _

specific weight. Ibf/ft a

7'= (g/&)_
finile difference. ,we change.

between two points or

condithms

incremental quantity, such

as thermal energy _)

height of pipe wall roughness ft

protuberant'us

nozzle et_fiency

cone half angle

coe_cient of ab_dute

viscosity from r=ttldV/dv)

viscosity, kt' = gg._ (6.72)

viscosity in centipoise

| ]IX) g/cm-se(q

J,_ule-Tholnson coefficient

mass density, p:= y/g,.

dimensionless

dimensionless

dug

lbf-sec/ft z

Ibm/f t-see

eentipoise

flz-°R/Ibf

slugs/ft 3. or

tbf-se_,z/ft _

fluid shear stress, r--'-f.tpVZ/2) Ibf/fl 2

kinematic viscosity, ftZ/sec

v = p,/p = _'/3'

mass flow parameter, dimensionless

d' = w/AP _ RT/g,

constant. P;TT dimensionless

constant. 11,,, = Pc,./T =/_ ft-lbf/mole:w°R

angular velocity rad/sec

infinity

5ymbol

0

!
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A

SUBSCRIPTS

Description 5 , mbol

stagnation state /where velocity is zero) a

inlet or upstream conditions, unless otherwise aw

specified b

_,ullet or downstream conditions, unless other- c

wise specified t

a;.r at standard temperature _60° F; in

Description

conditions resulting from an actual pr{n'ess

adiabatic wall conditions

bends

critical state

ic ._al c.udition

(',,_ - of entering fluid
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Y,ymbol

J

1_.

n

o

out

P

f
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COMPRESSED C.4S H_'DBOOK

Descrtptmn S*mbol

nozzle throat conditi,_ns t

loss g."

molal quantitiea, u'
direction nor:nal to the shock wave

++verall x

conditions of exiling fluid Y

direction parallel to the shock wave

reduced state (the ratio of a property I. the

value of that property at the critit'a] state_

conditions resuhing from an isentropic process

standard conditions of temperature {60 ° F)

and pressure !!4.7 psia) o

Dew'rt/Htsm

total

w_ter at standard temperafure _('_P F_

pipe-wall c,_ndi;i_ in._

conditmt|s up_Iream .f a normal _h.,ck wave

condition_ downstream ,)f a normal shock

wave

dimensi,ndess rati,, f,,rm. _u,'h a* T.= TiT,

and w.=-wlw,, reft.renced to the initial

values T,. IF, and a,

ambient or outside co.ldith,n

properties of the ench,aed system

._wl;istcipn

l_esc ription Symbol

c, mditi4ms at the s,,nic I_inl. or ptfint ,,f **

choking in adiabatic flow lwhere M-1.0_.

excluding M* which is dehned otherw,._e

Descriptie.tt

conditions at the point of choking in is,,thermal

pipe l_w (where M= M** = l/V'k)
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CHAPTER 1

FUNDAMENTALS OF THERMODYNAJ_JCS

, ,, , M, ,,

Thermodynamics encompasses a broad field and is pertinent to many facets of science;

this presentation, however, is primarily concerned with the thermodynamics of gases.
"Thermodynamics" is defined as "the science that treats the mechanical action or rela-

tions of heat." According to this definition, thermodynamics deals with heat and those
properties of a substance that bear a relation to heat.

The study of thermodynamics is based on certain observed principles designated as the

first and second laws of thermodynamics. A full understanding of these laws is basic to an

understanding of thermodynamic fundamentals. These laws are presented in this chapter,

preceded by defimtions of the basic thermodynamic terms. A clear understan,Jing of these

terms is absolutely necessary for an understanding of subsequent material on this subject.

DEfiNITION OF TERMS

Thermodynamic System

For processes inw, lving the transfer of energy from one location to another, it is necessary

to define the boundaries of these I,cations. One of the h,cations is known as the system.

The system is the portion of the universe to be examined: it may be arbitrarily selected to
include any portion of the universe.

This definition of a system permits a system as large or as small as the investigator

desires. However, systems with sizes approaching the dimensions of the mean free path of

the molecules of the _.ubstance call for special treatment and encompass the field of quantum

mechanics. Since most engineering analyses are for the purpose of analyzing the gross
behavior of a substance and not that of the individual molecules, the fiction of a continuous

substance, or continua, is used throughout this text. The assumption of continua is valid
as long as the system volume is sufficient to represent the actions of the substance and not

the individual molecules which comprise the substance.

As an illustration of a thermodynamic system, consider the classical example of a _'.as

in a cylinder fitted with a frictionless piston. If an additional weight is placed on top of the

piston, the gas will be further compressed, and the weight and piston will fall to a lower

position in the cylinder. If the room containing the apparatus is arbitrarily defined as the

system, there has been no transfer of energy between the system and the rest of the universe.

However, if the gas contained in the cylinder is selected as the system, an exchange ofener_
has occurred.

PRI_C_D1NG PAGP, BLANK kIC_T F'I]',MI_3
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There are two types of systems considered in thermodynamics: the closed and open

systems. The closed system is defined as a syslem that allows heat and work. but hot mass.

to cross the system boundary. The open system is one in which work. heat. and mass may

pass the system boundary.

As stated previously, the choice of the system is arbitrary. However. the choice i,. an

important one. since it may determine whether _r no; a given pr,_blem can be adequately

analyzed.

Surroundings

When the system boundary has been established, the remainder ot the universe i., desig-

nated as the surroundings.

Thermodynamic Store

A thermodynamic system always possesses a definite state. The state of the system is

related to, or is determined by, the properties of the system. Properties of a system may be

grouped in two general categories known as extensive properties and intensive properties,

Extensive properties are functions of the amount of material or matter within the system, and

intensive pruperties are independent of the amount of material in the syste;n. For example.

temperature, pressure, and specific volume are intensive properties, but total w)]ume and

total energy are extensive properties.

A stable system cannot be assigned arbitrary values for any number of intensive proper-

ties. For example, a pure gas such as nitrogen cannot exist at any temperature, pressure.

and specific w)lume in a stable state. _'hen the pressure and tempe_'ature have been

chosen, the specific wtlume is no longer a free variable: that is, it has a definite value deter-

mined by the pressure and lemperalure seie('led. (;ibbs" phase Fn]e e,mbles -ne t- prvdict

the number of intensive properties that must be specified in order to fix the state of a system.

The phase rule may be stated as

P' + l"' =G'+2

where P' is the numb¢.r of phases. I"' the number of variants (or the number of intensive

variables that must be specified before the state -f a system is completely fixed_, and G' the

number of c.mp, ments. Hence. if the system is a single gas. the phase rule indicates that

tw- intensive pr, perties must he kn,wn to determine the state of the system, if two intensive

pr.perties, such as pzessure and temperature, are specified, then all ,ther intensive properties

are invariant. -_s another illustration of the phase rule. stipulate that two phases of a single-

component systen; ;ire in equilibrium, such as liquid water and water vap-r. ()ne intensive

property, such as temperature, is suffwient t,_ determine all other intensive properties and.

therefore, determit,e the state of the liquid-vapor system.

Property and State

(].nsidering a given mass. a substance such as water may exist in many states. For

each state there is a specifiv value f.r each i;r,_perty..ne .r m.re-f which must change for a

change in state. Pr, pertie._ are dependent on the state only and thereby are entir;_ly inde-

pendent of thepr, wess. ,)r path. by which tbe state zas.btained, in fact. a property may be

defined as any quantity that is dependent ,,u the state ,rely.
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Process

_'her, a change in the therm_dynamic properties _,| a system orcur_, the state ot the

system changes tr,_ni .;,,nte initkd _tate to the final _.tate. Bctween these two extremes, there

in an infinite number _,f slates thrt_ltgh which the system passes. The p;Jth traced l_y lhe,_e
ir_termediate states is ternued the "'therm{,,lynamir pr,,res...'" If a system passes from ,t:t

initial _tate through a suc('es.;itm of pr,,t'esses and reaches a final slate identical to the

initial state, the system has underg:me a thernu,dynamie ('yrie.

P'rocesses are {,lien d'es(,ribed by the fact that some thermodynamic propert_ is held

constant. Hence. an adiabatic process is one in which there is no heat transfer to or from

the system. In practice, this process is approximated wFen the system is thermally isolated

from the surroundings or when heat transfer is negligible because of a -,hort time duration.

The i._c,thermal process is one in which the system temperature is constant. This

process is approximated in long pipelines where fluid flow rates, heat-transfer area. and heat-

transfer time are such as to maintain an essentially constant fluid temperature: that is, near

that of the summndings.

The constant-volume process is a process occurring at constant system volume. An

example of a constant-volume process is the heating or cooling of a gas in a storage brittle.

The constant-pressure process is a process in which system pressure is invariant. An

example of this is a process in which a gas is heated in a cylinder fitted with a frictionless

piston which is permitted to slide freely against a constant force.

There are two other process descriptions of a different nature from those above that

need mention here: these are the quasi-static process and the reversible process. The qua_i-

static process is any process in which each state attained during the process is an equilibrium

state. The reversible process may be defined as any process which can be carried to eom-

pl,_tion, reversed, and carried in the opposite direction back to the initial state and leave no

change in system or surroundings. It can be shown that for a process to be reversible, each

state must be an equilibrium state. Hence. the reversible process is also quasi-static.

Pure Substance

A pure substance may be defined as any _ubstance with an invariant chemical composi-

tic,n. A substanre surh as water, therefore, is a pure substanre, since the chemical com-

position is the same if the water exists as a vapor, a liquid, or a solid, or any mixture of the

three. On the other hand. a substance such as air is n,t a pure substance, sinee the chemical

composition will vary in a mixture _,f the gaseous anti liquid phases. However. gaseous air

exhibits many of the characteristics of a pure substance, and when no phase rhange is in-
volved it can be treated as sut'h.

As has been shown by the Gibbs" phase rule, two intensive properties are necessary to

specify the state of a single phase of a pure substance. In general, then. two intensive prop-

erties, such as pressure and temperature, can be chosen as independent variables in terms

,ff which the *_te and all other system properties can be defined.

Pressure Scale

The pressure on a system is defined as the force acting on the system divided by the
area over which the force is in effect. If the force is measured in the gravitational unit ot

pounds and the area in square inches, the units of pressure are pounds per square inch {psi).

5
_2:')-9_40 69- 2
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Fluid pressure is generally designated as pounds per square inch db,;,dute (psia)or pounds

per square inch gage Ipsig_. Pres:;ure in psig plus atmospheric pressure equals pressure

in psia.
Frequently. pressures are measured in terms of the height of a column of fluid under

the influence of gravity. The pressure corresponding t{, the weight exerted by a column
of fluid will be numerically equal to the product of the height and the weight de_,sity of

the fluid in a standard Earth gravily field. More exactly.

Absolute pressure measurements are based on a zero reference point, the perfect
vacuum. Measured from this reference, the standard atmospheric pressure at sea level

is approximately 14.7 psi: however, local pressures may deviate from this standard value

because of weather conditions and distance above sea level. Figure 1.1 shows graphic'_lly

the relation of the various pressure terms.

Star_d¢,rd

Atrnos_hecc
Pressure

14,7 psi

t
Gage
Pressure

psig

JocoJ

Atmospheric
Pressure

Absolute
Pressure

psia

Vacuum

in. H_
(gagd Vacuum

In. Hg

(absol utet

Absolute Zero Pressure, The Perfect Vacuum

FitKure 1.1. Diagramshowing relation ,,f pressure terms.

Temperature Scale

The temperature of a system is a mu_h more difficuh concep_ to define than pressure.

Although pressure can be measured in definite units of force per unit area, temperature must

be measured indirectly through itc effect on the physical properties of a chosen material.

Physically. temperature is an indication of the kinetic energy of molecules. It is sensed as

the degree of hotness or coldness of a substance measured by arbitrary scales set up acc_rding

to reference c.nditions. Probably the most frequently used device is based on the effect ,,f

temperature on the volume of a given quantity of liquid mercury.
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"Fo e_tahlish a numerical scale o'. temperature by this method, it is first necessary to

devhle on the hwrease in mercury vMume !or length of e_h, mn if tile cn_s_-sectional area is

c-n_lant 1. which i_ to be ch_,_en equal to a unit ri,_e in temperature, commonly called a degree.

This is an entirely arbitrary eh_we. "]'he usual _me i_ to com.ider the difference in length

_t' the mercury c,phnnn when the lherm_naeter is placed in ice water and then in b,,iling water.

mamtahu'd at stamtard atnn,spheric pressure, a_ equivalent to 100 ° C or 180 ° F. Any other

temperature, in o(:. is then defined by the fl_llowmg linear relati_m between the temperature

and the length of the mercury ,,lumn:

( t-t,_,
T (°C)= 100 \L,,,,-L,,I

where.

L = length of mercury column at T ° (:

Lo= length _f mercury column at 0 ° C

Ll,,,= length of men'ury column at lf_ ° (_

Variations in physical properties -ther than the expansion of liquid unereury may be

employed as a medium for measuring the effects of temperature. Am,rag the properties

that have been used are the fi_llowing:

{l) Vapor pressure of liquids

q2) '_'ectrieal resistance of metals

(3) Electromotive fi_rce (emil produced as a resuh .f a junction of two dissimilar metals

t therm_.t mple I

(4) %_lume expansion of gases

The variation of the physical properties with temperature is not linear in all eases.

ahl..ugh the temperature scales are constructed as linear subdivisions hetween any two

referem'e temperatures, such as the difference between the freezing ami boiling points of

water. Therefiwe. therm,mwter accuracy at any other point will var_ depending on the

linearity _d the physical properlie_ used as the basis of lhe thermometer.

Henve. it is apparent that all the common methods of measuring temperature depend

ml evaluat?ug the effect _t temperature on the physical properties of materials, and thai the

temperature scale will vary with the physical property and the material used in the /her-

In_mletel'. -st scale which is independent of the properties .f the materials employed in the

measuring devices, that is. a thermodynamic or absolute scale, would be desirable. The

sec,,nd la,_ ,ff therm,_dynamics. ,_hich is discussed later, pn_vides the ba_.is fi)r establishing

such a temperature scale. The international temperature scale, which has been fi_und to be

the cl,,sest approximation to the abs, dute or therm.dynamic scale, is based ,m the fidl.wMg

measuring devices:

-- 190 ° to 660 ° C- platinum resistance therm-meter

660 ° to 1063 ° (:- platinum-rhodium thermocouple

Above 1063 ° C-optical pyrometer

]t has been found that the temperature scale necessary to reconci]e the pressure-volume-

l..'mperattnre (P-v-T) re[all.reship .fa perfect gas is identica] with the therm_wlynamic tem-

[_erature scale: that is. the temperature T it_ the perfect-ga_ _'quati_n of stall; ]_t RT is
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identical with the thermodynamiv temperature. A|though there is no truly perfect gas,

many gases approach this behavi,.._r so that the gas thermometer may be u_e,1 to approach

closely the absolute thermodynamic temperature, in using the perf+ct-gas thermonmter,

the pressure and volume of a definite quantity of gas are measured. Tl_en. according t_ the

perfect-gas law, the product of these two quantities is directly proportional to the absolute

temperature.
Heat

Another metl,od of approach to the concept of temperature is to consider it as a potential

for transferring energy, just as voltage is a potential for transferring energy by an electrical

process. From experience, it is known that a hot body brought into contact with a cold body
becomes cooler and the cold body warmer. This is a result of the transfer of heat between the

two bodies. The rate of heat transfer depends on the temperature difference between the.

two bodies: when there is no difference in temperature, there is no transfer of energ3,. There-

fore, "heat" can be defined as thermal energy transferred from one body to another as a

result of a temperature difference. It is important to note that none of the energy stored in a

body can be called heat. Only when there is a transfer of energy from one body to another

does the term "'heat" have any significance. Hence. heat is not a property of a body or sys-

tem. The effect of the tram_fer of energy as heat to a system is commonly measured in terms
of the change in properties of the system.

Work

In a general way. "'work" may be defined as the product of a potential, or force, and an

amplitude factor. If the force is mechanical and the amplitude factor is the distance through
which the fi)rce operates, the resuh is mechanical work.

Like heat. work is energy that is transferred from ,,ne body to another. However. in

the case of work. the potential involved is a fi_rce, or pressure, instead of temperature. As

an illustration, consider the compression of a gas in a cylinder by the movement of a piston.

The compression is accomplished by the application of a force to the piston, ansi this results

in a transfer of energy from the piston rod to the gas. The energy so transferred is work in the

thermodynamic sense. _ork is not a property ol a system, but is frequently measured

in terms ,,f its effect on the system properrie,, In the compression process just discussed,

at lea.q a portion of the work becomes a pzrt of the internal energy of the gas and changes
the value of that property of the system.

Since work results in a transfer of energy, it is associated with a source and an acccptor.

Also, the work effects may take many forms, such as changes in potential ener_', kinetic
energy, and internal energy.

The mechanical work accompanying the change in w>lume of a fluid is by far the most

important type that occurs ip engineering thermodynamics. _'ork may be expressed in
differential form as

d Wk = F <t._

where F is the fi_rce and x is the distance through which the fl)rce acts. Since the pressure

of the fluid is equal to the f,_tce divided by the area, the equation for work may be written

dWk = P (tV

8



where d_ is the change in wdume. This is the general expressi{_n for the _,ork d,me as a

result of a differential expansion or compression process. It is written in differen6ai form

because the pressure may vary as the volume changes. If there is no change in wdumc,

there can be no expansion work. However. if there is no change in pressure, the work is

simply the pressure times the cimnge in volume.

ZEROTH LAW OF THERMODYNAMICS

Practical applications of thermometry binge on the assumption that two bodies, respec-

tively, equal in temperature to a third body must also be equal in temperature to each other.

Fortunately, this assumption is amply verified by innumerable experiments, it is sometimes

called the zeroth law of thermodynamics.

FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics is a statement of the often-proved principle of conser-

vation of energy. For a system of constant mass (the closed system) undergoing a cycle,

the first law may be stated thus: The amount of v'ork done on or by a system is equal to the

amount of heat transferred to or from the system. Mathematically, this is expressed

where 8 represents the differential form of a path-dependent function of which heat and work

are examples.

Regarding the above equation, the units generally used for the quantity 60 are Btu's

while fl-lbfs are generally used for the quantity 8Wk. Hence, for this equation to be dimen-

sionaUy correct, it is necessary to introduce the quantity J, Joule's constant, which is the

mechanical energy equivalent to thermal energy.

J = 778.26 ft-lbf/Btu

Hence, the previous equation writtel, in dimensionally correct units becomes

5Q=_ 81_Vk {I.1)

General Statement for the Closed System

To extend the definition of the first law to a closed system undergoing a process as

opposed to a cycle, consider two cycles consisting of processes .4, B, and C. Cycle 1 consists

of process .4. which carries the system from state I to state 2, f_slh:,wed by process B. which

completes the cycle ahmg a different path (fig. 1.2). Cycle 2 consists of the same initial

process d, but the process cor,lpleting the cycle is ahmg a third path C.

For cycle 1 the first law may be written

j _ SWk + 3Wk
B

9
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State i

Figur_ 1.2,

State 2

|)i,0,'ra0n ,,|' Iv.,, thernlod..Hal|_,( d,kvle_ wi|l! .]

Aim for cycle 2

Cz4 "' 1 """8Wk + j ,cj,., L.
Since for the common process A. t,_ integrals of 8W'k and 8Q are equal, combining and

rearranging the two equations yield

and on integrating

,, ,f,,

"Q'I,-(J) zWk'l,= _O'l,- (_)"lt/k'J,

Since processes B and C are general processes, it may be conch|ded that the quantity

[.,_Q,-(1/J) ._,tVk,1is independent of the path and is dependent on the state only. Hence.

{,,.Q,-(I[J ._,l_'k,I is a thermodynamic property and i_ called the t¢,tal energy E. It follows

that for the closed system undergoing a change of state, the first law may he written

(I.2)

This equati.n points out that fi_r a closed system undergoing a change of state, the net change

in the total system energy is equal to the algebraic difference between the heat transfer and

the work perf-rmed.

It should be pointed out here that the convention used in this handbook regarding heat

and work is to consider heat transferred to a system as positive and heat transferred from a

system as negative: on the other hand. work done by a system is positive and work d.ne on a

system is negative.

General Statement for the Opon System

The first law expressi.n for the open system (one which allows mass to pass through

the system boundary_ may be established by considering the system shown in figure 1,3.
An amount of mass, g",., enters the system and the amount. 117,,._.leaves the system.

Also. the system receives an am.unt of heat. _'g,). :_'nd does the amount of work. 81Vk. For

these conditions, the energy change of the system, designated E,,. is given by

lO
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1
dE., = dW,.e.., -- d W,.uteout + 6Q - --; (81Vk - P*n d/?,. + Po.t d V.,ut)

J
(1.3)

where the symbols ei, and e,,ut refer to the specific energy of the mass entering and leaving

the system, respectively. The P dl? terms are ttow-energy terms and will be explained here.

dWin

I
t
I
I
L..

Z

,_Wk

I

dE. ]l
I

_)

System Boundary

: dWout

Figure 1.3. Open system with heat transfer and work being done.

_lo., tne,m

The energy of a system is increased or decreased as the result of fluid crossing the bound-

ary of the system. Consider the system of figure 1.4. In order to move the mass of fluid,

dW, through the pipe and past the system boundary, it is necessary to do an amount of work.

dlVk=F dx= (F) A dx

It follows that the work done in moving the mass dlV past the system boundary is given also by

dWk = P dV

As a consequence, when the mass moves through the system boundary, the system's energy

is altered by the amount P dlY. Flow energy then is the energy transmitted to a system by

virtue of mass crossing the system boundary.

-- g.ass dW

, ,," 13I
I
I

Figure 1.4. System energy is increased as a result of mass entering the system.

li
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It i_ important I,, note that tile How energy depends q+n mattt'r crus,+lng the systt-tal

boundary. Theretorc. for a system ,_'hich allows n,, matter to q'ros_ it._ b,_undary, the" I.)r+,du,'t

P dr'. although it may |_. calculated, does n.t represent an energy term t_r the" system.

Equt_tion 41.3) ;s the general expression ,d the first law ,d thermodynamics fi,r an open

system underg,,ing a change ,d slatt-. |t,_t._,_'r, in it_ pr+'..t'ut form. the ,.quatiqm is n,_t par-

ticularly useful because of the ambiguity of the ,iuantitic._ E._ and e. For this reason, it n.-;

desirable to find expressions h,r the component paris that make up the total quantities E,,

and e.

In thermodynamic analysis of open systems it is most convenient to think ,,f the quantity

E,, as being made up of three component parts: kinetic energy, KE: potential energy. PE: and
internal energy. U. Mathematically,

E KE PE

Kinetic energy is energy a substance possesses as a result of the motion of the substance.

An expression for kinetic energy may be obtained by equating it to the work done in cban_ng

the velocity of a mass. I_'.

d(KE) =d(_'/0 =F dx = (ff,_ c_ dx

This expression may be integrated from zero velocity to obtain

KE = IVI"
9,r

Potential Energy

Potential energy is the energy a mass possesses as a resuJt of elevation above some

arbitrary datum elevation. ,;n expression for potential energy may be obtained by equating

it to the work required to raise u an incremental height dz against a gravitional acceleration.

g. with no change in kinetic energy.

d(PE)=dl_"k=(_) l_q=

This equation can be integrated from a value of z=O at 'he datum elevation to any height z
above the datum to obtain

Internal Energy

At this point, all the energy terms generally considered in thermodynamic analysis haw_

12
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been discuss_-d ex_'ept inlernal energy. This implies thai interaal energy ,'an ¢or,:dst of all

fiwms of energy wilhin a system other lhan kinetic, potential° and flow energies. Internal

energy may consist, then. of energy associated with the movement and p,,silb,n of ga_ mole-

cules, chemical energy such as is present in a storage battery, energ) pre_cnt in a rharged

condenser. ,_r a mlmber o|' other forrn,_.

Internal energy is an extensive property of a ttuid and is given the symb_,l I'. in the

absence of electrical, magnetic, and surface effeets, the internal energy ahmg with one ,,,ther

independent property will specify the state of a pure substance.

Ent_lpy

This is an energy term defined as the sum of U and the V,.Juct PI _.

Since internal energy and the product P/_ are dependent on the state only. it fl_llows

that enthalpy is a state-dependent function and, therefore, is a thermodynamic property.
Because enthalpy is a function of flow work. it repre_nts a useful energy term for the open
system only.

Wod, i,_ ru_nkms

Having defined all the components of the quantity E,,. it is possible to rewrite the first
law in more useful terms. Considering the closed system, the first law may be written

or

alVk
,tE,, = aq- _-

J

dU 4- d \2_,J / ' _' dz= aq 6g'kj

In terms of specific quantities

or on integrating

I/_-V_ 4- g---{z._,-z,l]=,Q._,--(1)

For the open system the first law is written

1

dE,r = 6Q -j (81¢'k _ P,,,,t ,it",,.,, - P._ dV,. ) + d_'ine,n - dl_',,ute,,ut

.r.n.ting that
tCfin _ V_n2 -- _fZ.,_

%' .... if',. 2g, J-'r g,J--7+ uu, an(] lhat u,n d_'in= dl'i.

13
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d [U+ _7-'--; + -; I,::.• _g,,J =_-j_SWk+Po.,d., P:. d/2tn)

L 2gcJ ;- dWtnzt=

-[dUo,,,+ dW_tV°"i-z + (g_ ) dW°utzou' ]2g,-J

Rewriting in terms of specific quantities, noting that d#= v dW.

= _-- -7-+ dWm

+-_+ _) _,.]-dW. [u..,+ P"_

+_gd+v°_'_(sS):,,_,]

For a transient flow problem, this equation must be _lved repeatedly for small time incre-

ments. When the input and output weight-flow quantities are continuous flow processes

with relatively constant specific energy, e. the energy equation can be written as a quasi-
steady-state equation

dt 2gcJ #;<.j j I,, J

[u,_+_+ V'"2 ,z,., l

F PoutVom ]_+ _ (Zout)-- gt,oUt I/lout + T + _/°u'2 g2g, J g_J

where

• 8Q #/,= _wk dW
q=_- dt w= d--t-

Note that since Wm can be different from Wo.t. the mass of fluid, g/_, enclosed in the system
can be a variable.

If the flow rate and state of the fluid at any point in the system do not vary with time, and

if the rate of heat transfer and work done do not vary with time. the flow is a steady flow, and

and

14

dt (We)a='_/_' t--d_-) +e" \ at ]=0

/L'in -_- /A;out _/_,
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"_hen

since

O+um+_+_+gg_.J (Z'n)=-U--_+U°u' Ju, 2g,.J gd

• _Q dW
O=-d-i and '*=--d-i-

_o l,v.kk

-= = Q' and = =w Jw JdW J

The quantities Q' and wk are the heat added to the system and work done by the system per

unit weight flow through the system. Substituting this and the definition of specific enthalpy,

h---v +Pv/J, yields the steady-flow energy equation in terms of the specific or intensive

properties

° ,.,l.
SI_DND LAW OF

Before considering the second law of thermodynamics, recall that the first law places

no limitation on the eff, ciency of energy conversion or the direction in which a natural process

will occur. The first law is said to be a denial of the possibility of creating a perpetual-motion

machine of the first kind. That is, it is impossible to construct a device that will produce

useful work with no energy input. Note that a process which consists only of the transfer

of heat from a cold source to a hot sink is a valid process according to the first law. However,

we know from observation that this process is not valid. For instance, a hot cup of coffee

coo:s in the cooler environment: it never becomes warmer. This directional ! property of

natural processes is the essence of the seco.nd law of thermodynamics. In a broader sense,

the second law is a denial of the possibility of a perpetual-motion machine of the second kind.

This is a machine which, when operating in a cycle, converts all the heat it receives into useful
work.

The basis for the second law was established by Sadi Carnot in 1824. Carnot. through

the fiction of a reversible cycle, determined that no heat engine could operate with a thermal

el_ciency of 100 percent. Further, Carnot showed that the thermal efficiency of the reversible

ideal heat engine operating in a cycle between given temperature limits was independent of

the working fluid and was dependent only on the temperature limits between which the re-
versible heat en_ne operated.

This last statement concerning thermal efficiency is very important in the field of thermo-

dynamics because it points out the possibility of the existenee of a temperature scale that is

independent of the working fluid. This simply means that a direct relation between tempera-
ture and heat transferred may be proposed, and based on this relationship an absolute tem-

perature scale may be established.

Statement of the Sea:rod Low

There are two classical statements of the second law: the Clausius statement and the
Kelvin-Planck statement.

15
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(:LAUSII S STATEMENT

It is impossible to construct a machine that. while _:perating in a cycle, will produce no

effect other than the transfer of heat from a low-temperature body to a high-temperature body.

KEI,', IN-PIANCK STATEMENT

It is impossible to construct an engine that, while operating in a cycle. ",ill absorb heat

fr{,m a single reservoir and produce an equivalent amount of work.
As a consequence of the second law, there are several statements that are most important

to the application of therm4_lynamics. Since these statements are not altogether obvious

from the statements of the second law, they are listed below:

{1) The second law leads to a thermodynamic property-entropy-normally given the

symbol S. More will be said about this property subsequently.

(2) The thermal efficiency of a reversible heat engine is dependent only on the tempera-

ture limits between which the reversible engine operates,

{3) All reversible heat engines operating between the same temperature limits, have the

same thermal efficiency.

(4) It is possible to construct a temperature scale independent of the working fluid.

(5_ It is impossible to construct a heat engine more et_eient than a reversible heat engine.

(6) Mathematically, the inequality of Clausius is stated

Physically this means that tor any cycle the quantity _JQ/T is less than zero. and in the limit

(the reversible process) it is equal to zero. The significance of this aspect of the second law

becomes more apparent in this discussion of the thermodynamic property entropy.

Entropy--A Thermodynamic Property

In the previous discussion of the work done at the moving boundary of a system, it was

h, und that the quantity 8g'k could be expressed as a function of the intensive thermodynamic

property pressure and the extensive thermodynamic property volume. This relationship is

expressed mathematically as

{StVk)r_,. = P d/?

The question arises as to the pq,ssibility ,f finding a similar relati,mship for {he quantity
8Q. To establish such a relati{,nship, the most logical intensive property is the temperature T:

however, there is. at this point, no extensive property to complete the pair. Therefore, it is

necessary to introduce the quantity entropy. Entropy is an extensive thermodynamic

property defined by the equation

Since entropy is a thermodynamic property, it, together with one other system property,
defines the state of a pure substance.

The question now arises: _hat is the relation between the values of entropy at any

16
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two arbitrary states? ']'his p,_ses tv,',_ questions: _X'hat is tile referen('e from ,_hieh entr.py

i,: measured'." _,hat effe_'t does a change in stale haw" on entropy?

Tile answer t,, the first question is. in part. the sul+ject ,_f the third law <)f therm,,dy-

nami<'s, v, hich states that the ab.,olute value of the entr,_py" ,)f xnost substan('es appr_+a, hes

zero at absolute zero temperature. :_,bs<dute values of entr_q+y have important usage in

chemical reactions. Howev¢'r. in the absence of such r.:,tctions, values measured relative

to +ome convenient reference state are entirely adequate, h should be pointed out here

that many tables of thermodynamic data INt +elative rather than absolute values of entr,_py.

The answer t_, the second question p.sed lic_ in the inequality ,d" (_lausius and a con-

sideration <_f the effect of heat transfer t,, q+r from a system.

According to the inequality q_f Clausius:

If a re,_ersible and an irreversible cycle have common end states and the reversible process

State 1

State 2

/ L"-- Rever? ible Pr°cess C

c.___ !rreversible Process B

.4 is (.omnlon t,, b.th cycles, the effect of irreversibility on entn,py may be determined _fig. 1.5).

Referring t,, figure 1.5. it is possible t_ write fiw the reversible cyt'le.

For t|. • irr_,w','sible _'y_'h..

-T--<O

Suhtractin_ the second equati.n from the first.

17
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Since process C is rever_ible,

dS

Also. since entropy is a thermodynamic property, the change in entropy between any two

states is the same regardless of the process. Therefore.,

or

S_- S, > j,_ -_-

This leads to the conclusion that the effect of irreversibility is to increase the entropy of a

system. The effect of heat transfer on the entropy change of a system may be illustrated

by considering the definition of entropy and recalling the fact that there are no negative values

of absolute temperature. Hence, if heat is transferred from the system (negative),

rev

or the system's entropy is decreased. On the other hand, if heat is transferred to the sys-

tem, 80 is positive and
Z,Q

Note that there are two possibilities 6_r a constant entropy (isentropic) process fi_r a system.
These are

It! ._ reversible l_r-cess _ccurring in a system that is thermally is.lated from the sur-

roundings so that 60=0 !the reversible adiabatic process_: and

(2} a process in which the rate of heat transfer from the system exactly offsets the entropy

increase caused by irreversibilities.

Although the proof is bey.nd the purpose of this handbook, it must be p_finted out that when

system and surroundings are considered together, the net change in entropy is always _eater
than zero.

In closing the discussion, the fidlowing should be pointed out once again concerning the

thermodynamic property, entropy:
(1_ The change in entropy may be thought of as a measure of the energy unavailable for

useful work, or as a measure of the degree ,f irreversibility cc;,nected with a given process.

(2_ There are three ways of increasing a system's entropy: (a) transfer of mass to the

system. Ib) transfer of heat to the system, and _c) entropy production the result of irreversible
work.

_31 When the system and its surroundings are considered t_gether, the net change in

entropy is always positive.

18
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At this point the usefulne._s of entr.py in quantitativeanaly_i_ may n,,t be apparent. How-

ever. as will be sh_,wn in a later section, entropy is very useful in relating thermodynamic

pr_,perties of pure substan_'es.

THERMODYNAMIC RELATIONS FOR A PURE SUBSTANCE

In this section, the origin of several useful relations between the therm, bdynami¢- proper-

ties will be summarized. It ha._ been shown that fl_r a closed system with negligible changes

in kinetic and potential energies, the first law of thermodynamics (eq. (].4.}) becl_me_

6Wk

dU= 6Q- j

If the process under consideration is reversible, the previous definition for simple

expansion or compression work and the equality definition of entropy may he substituted

into this equation to obtain

PdP
dU= TdS---

J

But since this equation is a function of properties only, it is true for any process (reversible

or irreversible_, irreversibilities merely cause a discrepancy in the physical meaning of the

independent terms, for example, the term TdS is not exactly the heat transferred, and

P dV is n.t -xactly the w,wk done. unless the process is reversible. Considering each unit

mass of a sub._tance as a closed system,

P dv
du = T ds t 1.6_

J

and this equation will be applicable fiw specific values of the related properties, regardless

_,f the type of pr_w,_ss or cycle considered, as long as changes in kinetic and potential energy

are negligible.

._ similar expression for entha[py may be derived by c_mbining equation t 1.6) with the

differential fl_rm of theequation defining enthalpy.

to obtain

dh = du +d(Pv)
.i

v dP
dh = T ds + _ _1.7)

J

which is still a statement of the first law fi)r a closed system.

While the expression for internal energy and enthalpy is most often used in formulating

engineering problems, two additional properties need to be defined in order to obtain relations

necessary in certain thernmdynamiv analyses. These prol._rlies are the Helmhohz functi,m

and the (',ibbs fum.ti, m.

The ttelmhohz function is defined as

A'= U-TS

19



By differen;ialhl_ the ab,we relati,m and vmnbining it with equation _1.6). the relati.n

is obtained.

Similarly. the Gibbs functi_,n

t_ du

d,l' = - -- - s dT tl.8)
J

G' =H- TS

¢'=h -Ts

may be differentiated and combined with equation (1 7) to yieid

v dP
j -s dT il.9)

Equations (1.6) through (1.9) can be used t_ derive a useful set of four relations for pres-

sure, v,lume, temperature, and entropy known as the Maxwell relations, if a math_,_:atical

expression of the form

d,Z = _1 dx + %' dy

is an exae! differential equation: then. by Green's theorem

Equations _i.6) lhr, mgh tl.9) are of lhis fi_rm, and since the variables are all lherm_dy-
namic properties having lhe characteristic lhat any lw. will determine all olhers, the exactness
criterion is reel. 17sing this theorem, lhe t'olb_ing relations may be obtained:

From equati_m (1.6):

,,.,o,
From equation (1.7):

From equation (1.8):

From equation (1.9):

5-_ ,= _ ,, a.]l)

,,.,2,

J GP/, ,= GT/,, ,1.]3)

20
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Three other useful derivatives will be defined here fl)r completeness, but the full signifi-

cance and importance of these derivatives will be developed in succeeding chapters. These
der_;valives are:

Joule-Thomson coefficient-

the constant-volume specific heat:

and the constant-pressure specific heat:

I.t.j= _OPJn i l. 14)

cr = !1.151

325 994 0 69--3
21



CHAPTER 2

p

PROPERTIES OF GASES

, . . .

Gas behavior may be expressed by two classes of parameters-the directly measurable

properties such as pressure, volume, and temperature, and the thermodynamic properties

such as internal energy, enthalpy, entropy, and free energy, which are not generally subject

to direct measurement. This seccnd group is useful in that it can be simply related to the

heat and wc"k effects that accompany actual thermodynamic processes.

The problem of predicting certain gas properties fl'om known gas properties has led to the

development of many property relations or, as they are commonly called, equations of state.

The simplest of all the relationships developed is the perfect-gas law. Use of this law is most

valuable in engineering analysis, since it affords the simplest relation between gas properties.

Unfortunately, the valid range of this law is solrr_what limited, so that care must be exercised

in its application. In general, high pressures and low temperatures or high temperatures

which cause ionization or dissociation will result in significant deviations from the perfect-gas

law, in which case a different approach should be used to relate gas properties. If, because

of the simplicity of approach or the lack of sufficient data, an analysis based on the perfect-gas

law is used at high pressures or temperatures, it is imperative that the credibility of such an
analysis be plainly understood.

When the state of a gas cannot be predicted by the perfect-gas equation of state, the gas

must be treated as a real gas There are several methods of predicting properties in the

real-gas region. One method is the empirical equation of state, which is an equation for a

curve fitted to experimental data. Another approach is the compressibility factor which ex-

presses the deviation from perfect-gas behavior at a given set of conditions.

PERFECT GAS

A gas may be categorized as being perfect by different criteria. Thus, it is correct to

speak of a mechanically perfect gas, a calorically perfect gas, and a thermally perfect gas.

In each of these categories, certain restrictions are placed on the gas. Hence, to be classified

as mechanically perfect, a gas must offer no resistance to shear. Therefore, the coefficient

of viscosity is zero. More will be said regarding this subject in chapters 3 and 4. The

calorically perfect gas is one which has invariant specific heats and, consequently, a fixed

specific heat ratio. More regarding this subject will be discussed later in this chapter.

The thermally perfect gas is categorically defined by the perfec|-gas equation of state
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In this handbook, tile term "'perfect gas" is reserved for a gas that is botti thermally and

calorically perfect. If reference is intended to any other criteria of perfectness, the terms

"'mechanically perfect," "calorically perfect," or "'thermally perfect" will be used.

Thermally Perfect Gas

The equation of state for the thermally perfect gas is a combination of the original Boyle's

law and Charles" law. Boyle's law, formulated by Robert Boyle in 1662. states that the volume

of a given mass of a gas varies inversely as the pressure at constant temperature.

Mathenlatically.

P

Charles" law states that the volume of a gas varies directly as the absolute temperature at

constant pressure, hence
#_T

Combining these two laws

p r
P

If two states of a constant mass of a gas are considered, the ratio yields

Vi= Tt/P,
V.,. T_.IP_

or on rearranging terms

P, Iy] = P:
T, T.,

It can be seen from this equation that the quantity (P_'/T) is a constant for a gas regard-

less of the state. Therefore, the above equation may be rewritten as

et?
T

The constant ['Ldepends only on the gas and the units of P, _-', and T. The value of [_ can be

established as a function of the molecular weight of the particular gas and the mass of the gas

enclosed in the volume by a consideration of Avogadro's law.

Avogadro's law states that an equal number of molecules of any gas will be contained

in a given volume at the same temperature and pressure. ,_ convention has been established

to relate the number of molecules to the occupied volume at an arbitrarily fixed standard

temperature and pressure. The reference number of molecules is selected to be consistent

with the atomic-weight scale where atomic oxygen is assigned the value of exactly 16.0.

For convenience then. the reference quantity of gas is defined as that number of oxygen

molecules {2 atoms per molecule) which together weigh exactly 32 units of weight in the

particular system of units being used, This reference quantity of gas is called a mole and

the actual quantity, or number of molecules, in a mole depends on the system of measurement

(unitsl. However, in any system of units, the number of conventional weight units in a mole
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of any gas is exactly equal to {numerically) the molecular weight as obtained from the atomic-

weight scale. For example, in the metric system, 1 mole_ of oxygen weighs 32 grams, contains

6.02 × ]0 .+3molecules, and occupies 22.4 liters when maintained at the arbitrarily established

standard temperature and pressure. It will be seen below that the standard temperature and

pressure must be universal to produce consistency between different systems of units.

These st,,ndards have been established as the freezing temperature of water and standard
atmospheric pressure.

In the English system. 1 molem of molecular oxygen amounts to 32 Ibm and contains a

specific number of molecules. The exact volume occupied is not significant, since it depends

on the particular selection of the reference temperature and pressure. The fact that the

volume of a mole at some fixed temperature and pressure is the same for any gas is very

significant when factored into the relationship obtained from Charles" and Boyle's laws.

if v,. is the volume of 1 mole of gas at the reference temperature and p+essure, then for
! mole of any gas

tel

This special value of f_,,, =/_ is seen to be independent of the gas, since t,,, is the same

for all gases. The constant /_ is termed the universal gas eonstam and for any gas that
obeys Charles" and i$oyle's laws

Pv,, = [_T (2.1)

and for N moles having a total volume./2= Nv,,,, the perfect-gas law becomes

P_'= NRT (2.2)

The value of i_ for vatrious sets of units is shown in table 2.1

For engineering _'ork, it is usually desirable to convert the molal specific volume term in

equation (2.1) to more convenient units of volume per unit weight. This is equivalent to

converting the units of weight (or mass) of the term N from moles to the standard units of

weight. As stated previously in the (lescription of a mole, the number of conventional weight

units .in a mole is numerically equal to the molecular weight of the gas. regardless of the system
of units. Then it follows that

W = NM,,, (2.3)

Note that this use of the molecular weight requires that it take on units of weight per mole.

In the English system, it is called the pound molecular weight and has units of lbm/molem.
Equati(m (2.2) then becomes

or

P k

The quantity lY/IP"is the specific volume per unit pound mass. v, and the quantity J_/M,.

25
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is the gas constant. The gas constant depends only on the molecular weight of the gas and

is designated R. Mathematically,

M_ t2.¢)

TABLE 2.1.--Systems of Consistent Units for the Perfect-Gas Equation of State Using the
Universal Gas Constant [_

e

IbOft" fi3

Btu

lbf/in z ft ._

¢1tl31 cm 3

mm Hg ('In 3

kg/m _ m 3

calorie

PV=NRT

I

N R T

mo]etb

mole Ib

mole =

lYl()leu

mole_

IllO]Pa

ft-lbf
1545_

molevb °R

Btu
1.9857 ---_

mole ih

ibf-fis

10.729 in z molelb °R

atm cm 3
82.0567

mole_ _K

62.363 mm Hg ('m "j
mole. °K

kg m
O.847887 ----

mole_ °K

cal
1.9857

mole. °K

"R

oR

*R

°K

_K

Substituting equation (2.4) and the relation v= IT"/W yields the equation of state for a thermally

perfect gas,

Pv = RT {2.5)

Values of the gas constant R in the English system of units for several gases are shown

in table 2.2.

Properties of the Perfect Gas

Having established the defining equation of state for the thermally perfect gas, it is nc,w

possible to determine the relations between the different thermodynamic properties.
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"ILxBI.E 2.2.-- Values o/ the (;_zs Const_nt R fo_ Nerer, d (;uses
......................................... T ...............................

t f'lt!L
Gas R \ibm0 R /

._ir .................................................
_rg_m ..............................................
Helium ............................................

Hydrogen ..........................................
Methane ...........................................

Nilmgen ............................................
Oxygen ...............................................
Steam ...............................................

53.34

::_8.66
386.0

766.0

96.35
55.15

111.28

85.76

Intenml_ _ E.tl_l_

The internal energy of a system is simply the sum of the energies of the gas molecules

that comprise the system. Mathematically,

N

U,== _ E,,.
7:1

where U,, is the i,lternal energy of the system. E,,, is the energy per molecule, and _' is the

number of gas molecules in the system.

if the gas con|prising the system is thermally perfect, it can be shown a!_alyticallv that

internal energy is a function of temperature only. This is accomplished by considering

equation _1.6t which is the first law of thernnodynamics for a closed system.

du = T ds - Pdr----2 [ 1.61
J

Differentiating with respect t_ wdume

d__u=T (d_s'_ P
dr \dr] J

Holding T constant, this equation can be written in partial differential form as

From the Maxwell relation, equation (1.12). (Js/Or)r may be expressed as

1 /_P /_s
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Combining the preceding two equations yields

= j

For the thermally perfect gas
Pr = RT

or in differential form with the specific volume, v. held conslant

v dP=R dT and \_]r=v

Substituting R/v into the previous equation, it follows that for the thermally perfect gas

or, since P = RTIv,

Ov/r--

Using a similar aaalysis, it can be shown that all other partials of :_ with T held constant

are zero. Hence, for the thermally perfect gas the internal energy is a fi_utction of temperature

only.
u=f,(T)

Having established the internal energy as a fimction of temperature ,,nl). it is a simple

matter to show that enthalpy is a function of temperature only. By definition,

and for the perfect gas Pv= RT, hence

P1)
h=u+_

J

h = u + _-_=./_(T)

The fact that internal energy and enthalpy are functions (,f temperature only tk)r a

thermally perfect gas leads to the important conclusion that specifying any two of these

properties is not sufficient to describe the state of a perfect gas. It is necessary, therefore,

to use a combination of either u or h and P: T and P, or other therrnodynamic properties

which are not a function of temperature al,me. Graphically, this may be illustrated on a

P-v diagram such as figure 2.1.

Referring to figure 2.1. there are many possible process lines by which the temperature

of the gas is changed from T_ to T_. Each of these lines will result in a different end state:

however, the value of u., and h2 will be the same for all states at temperature T_. Hence.

pairs of properties stlch as T and u, T and h, or u and h are n{,t sufficient t{, specify the state.
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hz h I , \h

Q____T 2u 2 u I '

\u

T:. \T

Fi_u¢,_ 2.1. Lines ,ff constant lemperature.

emhalpy, and inlernal ."nergv _w, a pressure-
volume diagram.

It must be remembered that the previous discussion is for the perfect gases only. As

will be pointed out in the discussion on real gases, the internal energy and enthalpy may vary

with pressure, and combinations such as h and T, or u and T may be sut_eient to specify the

state of the gas.

The constant-w_lume and constant-pressure specific heats of a pure substance are

defined by equations (1.15) and tl.16) as

OH'

c,_- ,110,
p

It has be_.n sh.wn that internal energ3' and enthaipy .f a thermally perfect gas are

dependent on temperature only. It foll.ws that the definition -f the constant-w,lume specific

heat and constant-pressure specific heat may be written for th_ _ perfect gas as h_tal derivati_e_

so that

du dh

_'=T¢ and c:,-- h--¢

From the definiti_m o| enthalpy.

h_- u-+---
eL?

J

or for the perfeet gas.

Hence,

= #RT
h u --

J
R dT

and dh = du + --
J

R _2.6_
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I'his i_ an hnporlant relati,n_hil, c,,n_ernin¢ the perfect _ be_'a,.'..;e il sh,v,s thai c,,

and _', have a cl,nlnlq_n difl'erenc_', the ga_- ( ,,/i.,tarlt. N.te. however, that th," pert'e_'t-u_a_,lay,

I;_a_'e_ no rt'strh'tions _Vl the ah_;olute valut' ,d c_, -r c,. T. d,'termine th," abe,duff" _,d0ae ,,|"

sl'ecific heat. :an analysis b_.:.,.,I -n kinetic lh,.',,ry ks u,_,'d as f,,ll.ws.

I".r the m,malomic gas. a fqludamental kin.-'ti_ theory relationship i,.

where I_,,, is the mass of I tool:% of the gas. and V is the average, translate,real velocity of

the molecules, and IKE),,, is the molecular kinetic energy _|" Jt m.le,,of gas. For lhe [wrfect

gas. using the thermal system -f units, it may be written that

Combiui_g these equations

then

/%,____,= (_T)=J 1.98,57T _ 2T

3 2g,.

(KE),,, = 3TJ

d_KE),,, = .3./dT

Sio.. _. the. change in the. trans!_vional kinetic energy .f the" m,mat.mi,' n.,iecules represents

the oh, ,.,gei,' :iwrmal energy or internal energy.

fi_KE) .... J du.:,---3.t ,tT

= du.. BI u
,, .... "d--_= 3 m,deu,:'R

Xgain. from ll_e deiivfi|i,,tv ,,1 ,'yt_ball,y , a_d 1he pt_rf_'t'l-_.as law

/_ ,'IT
dh,,, = du, _- .....

J

= 3 ,tT-e 2 dT

=5 dT
ttence.

dh,,, Htt_

"1", = {'_ = _ |nl,le|h o R

Then fi,r a vaonat.mic gas. the specific heat ratio. ,_,. is

k = g_2= _r'"'_= -=5 1.667
C I" Ct-ttt 3

30
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i)h_ts -t" the _;p,+,;h_ beat ratiqp versus tenlperature sh,_w r,_latively g_;od agreement

with the kinetic theor_ pr¢'dit'ti.m t'.r m.natomic gast, s in mo,+t instancvs. Figure 2.2 is a

ph,t .,f spe('ifit hei_t rat|- t'-r gase.us helium between temperatures ,ff -200 ° I" and 30i) ° F.

and pressure_ betw,'en 11..7 and 604X) psia.

N-re that f,,r the .... :;_:'r'-.re range sh-wl_ in figure 2.2, the lines are relati_,el> flat.

This indic'ate-; that tt+e spet'ific I.+ats are n..t app,, _!'d)ly altered by temperature ch_:;,ges.

&Is-. n.te th:.tt the .pread ca||sed by ('hanging pressure ,.- shi31l. This refleet_ the fa(t that

the perfet't-gas equati.n for helium is relatively accurate it. this regi-n: hence, the thermal

energies internal energy and enthalpy)are .nly weakly dependen: ',n pres_;ure.

1.67

1.66
]

i

..... r ......

I

-100 0 100 200 300

Figure 2,2.

Temperature, "F.

[nf_r*,unatel_. at temperatures be!.w -204) ° F the behavi.r M" the spe_cific heat rat|.

becomes :m_re erratic. This may be attributed t,, significant deviations from the perfe,'t-gas

law caused by change,_ in intermolecular |.tees and changes in the v.lumc .ceupied b_ lt,e
gas m.le('ules. Figure 2.3 shows signifi('ant deviation.,- in the specific heat ratio as a result

_f b.th temperature and pressure changes.

For polyat.mic m.le('ules, the ||.regoing kin+'tie theory evaluati.n is not valid. This is

to be expected _inc(. these molecules have energies a_sociated with the rotati_mal and vi-

bralional degrees ,,f freedom whi(.h a monatomic molecule does not I_ssess.

Heat energy supplied to polyatomic molecules is used n.t only in increasing the kinetic

energy of translati, m in the three directi.ns, but also in increasing the energy of rotation and

vibrati.n ,ff the at.ms _ithin the molecules. If the extra energy absorbed relative to the
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translational energy is represented by .If, and is independent of the pro_'ess (constanl volume

or constant pressurei, then the ratio of the specific heal will be

k = c_ = 5 +____X< 1.67
c,, 34-X

J?

II,
g

I.i

I1:

1.67

1.66

1.65

The ratio is less than 1.67, and with increasing complexity of the ,nolecule. the value of ._'

increases and the ratio k decreases but cannot become less than unity.

In those regions of temperature and pressure where the perfect-gas law Pt, = RT is n,_t

valid, it is necessary to resort to empirical equati.ns or charts of experimeo:aiiy determi_ed

values such as that shown in figure 2.2 or 2.3.
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[n regions ,,f low pressure, where the perfect-gas law describes ;he stale of the ,_,,_, but

specific heats are variable as a funeti,n of temperature, empirical equations are often used

in determining %. Several such equations are shown in tab|e 2.3.

If _he Sl:,ecifie heats are conslan! over a given range of temperatures, then the equations

dh =% dT and du=c,, dT

can be integrated to yield

h.,. -- h_ = colT.,. -- T,} (2.7}

and

u_ -- u, = c,. ( T._,- Ti ) (2.8}

Since l_=Q,fc,, and G,-c,.=R/J. it folh,_s that

kR

q' = J(k - 1)

and

_2.9)

R

c,. = J(k - 1) (2.10)

Hence, fi}r a thermally perfect gas

and

dh=[ k_]dT (2.11i

d,, = (.1 R - )dT ,2.12,( 1)

TABLE 2.3.--Empirical Eqpations for Determining C,m .lOt Several Gases

[ Blu _,pplicable Max t_,'r,','r_t
(;a-

I cw,,- mole=b__l_ ranc.e -- °R crr.r

172 1530
r ,:',,,, = 11.515 -- _-+-- 5411- 50(XI 1. l

) \T T
I_ ....................................... _ .........................................

O: 172 1530
%.,= 11.515-- --'-:-_ ---

\T T

;(°.°si,

_?, 1,7",'10:_ _|.16_10"

N_, : %.,, = 9.47 T 4 T_

........................

H: c,,,,,= 5.76-_ _ 1(_-_/T "4---=-.
'• X.T

.540- gO0_/ I. 7

,54.0-_)_) O.8

..............................................................
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Entropy

The e luations relating entropy change of a perfect gas are derived from the two relations

from chapter l.
Pdv

T ds = du + --f-- I1.6]

and

v dP

T ds = dh -- -7- [ 1.71

Considering equation (1.6) and introducing the perteet-gas relations

it is possible to obtain

For a thermally perfect gas

du = c, dT and Pv = RT

dT /R\ dv

_,=(e,,)Y+_3)

R
c'=j(k-1)

(2.13)

so that equation 12.13) may be written as

12, |4a)

If the specific heats are constant, the equation may be integrated to obtain

T, + R t,,,,],o (=.)
Also. from equation 11.7)

as= (g,I -_- 3 -#

By substitution, equation t,!.7) may be _'ritten as

kR
ds=_]dT_T_ \J/(R_dP

and integrated for the _,'ase of constant specific heats yields

i 2.1.1.b)

t2.|5)

t2. 16m

!2.16b)

Pedeo-Gas P_esles

CONST_'_T-VOI.I:ME PROCESS

A c-nstant wdume change of state may be illustrated graphically on a lemper_t,Jre-

versus-entropy diagram as re,own in figure 2.4.
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Constant _2

T

Figure 2,1,. C.ns;ant-'_lume l,r,,ve_ ,,q a

T--s diagram.

Since volume is constant, the work done in the change of state is zero as evidenced by

the equation

 k=f e dv--O

For the process, the first law for a closed system is

_rk
dO' =d-+ 7-

and since the work term is zero, the heat transfer is reflected by the change in intern£ energy

or

dO' --'=du

R dT
Entropy change is found from equal|on (2.14a) by setting dr= O: then

R

(2.17)

CONSTA-NT-PRESSURE PROCESS

This process is represented graphically on a temperatme-entrop;¢ diagram as shown in

figure 2.5•

T 1 _l 2

$

Figure 2.5. {]ttllS|itlll-Ifft'sslll'e IlfOVI'_S ,,n /1

T._ diagram.

Since pressure is a constant, the reversible work done is given by

fl
,wk=,= P dv=P(v_,-v,) _2.19i
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Then fbr the closed system the first law is written as

Since P dr= R dT, it follows that

P dv

dQ' =c,, dT+ --f- 12.20}

or

dQ' [ kS l
= t_J dT {2.21)

The entropy change is found from equation (2.16a), noting that in this case dP= O: then

dT

ISOTHERMAL PROCESS

The isothermal process is one which allows sufficient heat transfer to or from the system

to maintain constant temperature. This process appears as a straight line on a temperature-

versus-entropy diagram shown in figure 2.6.

S

Figure 2.6. Is.thermal

diagram.

The reversible work term fi)r the isothermal process may be evaluated by noting that at
consta_lt temperature

Pivi = P,,v_ = Pv = RT

hence,

and finally,

or. since Pv=RT,

f_ _ dvlwk.2= P dv =Piv,
1)

v,wkz=e,v, In (v'_=e,v, In
\Vd

Also, since temperature is constant,

(2.23a}

12.23b}

du = c,, dT= 0
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[t follows that the heat transferred to maintain constant temperature in tile closed system

is equal to the work term

(Ill_ t,,,

REVERSIBLE-ADIABATIC PROCESS

The reversible-adiabatic process is an isentropic (constant entropy) process. On a

temperature-versus-entropy diagram, this process plots as a straight vertical line as shown in

figure 2.7.

!

?

Figure 2.7.

$

[S_'lllr_qJlr l,rtH-c'ss ,bn a T-s

diagram.

Equati_m (1.6), the first law q_fthermodynamics for a pure substance undergoing a change

in state in a closed system, may be written as

dtt +-_= T ds = 0 [1.6]

For an isentropic process and a thermally perfect gas,

R

Writing the perfect-gas equation of state in differential fi_rm

P dv+v dP= R dT

and substituting for R dT in the previous equation yields

1 (p dv + t, dP)+ Pdr 0
JIk- 1) J

v dP+kP dt,=O

k aP

If k is assumed constant, this equation may be integrated to obtain

Pt ,_= constant

325-994 0 69 t

(2.25)
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I'rom the per|'e¢'t-gas equation ot' state, it follows that

k t

TI \PI!
and

t.._,=fTL'l_'-I

(2.26a

(2.26b)

The external work done in this process is given by

"_ ' du

(2.27)

POLYTROF'IC PROCESS

A l_)]ytropie process is a general irreversible process and one in which heat is transferred

to or from the system. This process requires on]), that its property changes be in accordance

with the equation

PV'-- constant (2.28_1)
or

Pv" = constant (2.28b)

where n is the constant polytropir exponent. Plotted on a graph of In P versus In t", the poly-

tropi(' process is a straight line with slope -n as shown in figure 2.8.

I.P

and

38
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Figure 2.8. P,,l_,tr,,pir pr.cess line.

For the perfect gas, Pv = RT, it follows that
rt-|

,,
Ti \Pl!

t2.29)

{2.30)
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For tile ch,sed system, the first law for this process is

or on integrating

P dv
dQ' = du +

J

iQ,+ ___ U., __ U, + fl 2. P jdv

Since Pv"--- constant, it may be written that

tip P ,vz.
p=-W, =

Substituting for P in the first law yields

_Q'.z=u_--u_-)-_-_f)_v -. _,

Ply)"

=u,,-u, J(n-1) (t,,' .... v,'-")

1
= c,.(T._, - T, ) (P,_v., -P,v, )

J(n-l)

Finally.

an,]

R R
( T_ -- TI ) ( T, -- T, )

J(k--l) J(n-l)

- 1 k- 1) (P,v,-P.,v::}

t2,31.)

(2.31b)

Equati, ms (2.3]) can als. I),cx+,r+'sscd as

i+: '
and convenient fl)rms of (T.,/T_) are available for substitution from equations (2.29) and

(2.30). Equations t2.31) and (2.321 are the expressions for the heat transfer during a poly-

tropic process. The reversible work done during this process is obtained only from the
P dv term of the first law, yielding

l
,wk._ = ]-_---- 1-_ @,v, - P..,v=,) (2.33at
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REAL GAS

Equations of State

The perfect-gas equation of state predicts the ideal ['-v-T relati_nship of any gas over

the full temperature and pressure range, h is an experimental fact. however, that at high

pressures or temperatures, or m regions near the point of condensation t:_ the liquid phase.

variations from this ideal P-v--T _'elationship do o,wur. The magnitude of these deviations

depends on the particular g_s and values M the temperature and pressure. As pressure i.,

increased from zero, the deviation frq,m the perfect-gas law increases. Also. the deviation

at a given pressure will be le._s at higher temperatures, except when temperature is so extreme
as to cause ionization or dissociatior_.

Numerous equations of state have been proposed that will. at least in part, compensate

for the deviation from r,erfect-gas behavior, am_mg these are:

I1_ "Can der Waals" equation

where a and b are _mstants. characteristic ,_t"the particular gas.

_2_ Berthelot's equa:ion

/ Pb' a P

where tt' and b' are e_mstants.

(3) Dieterici's equati,m

- a

,./Jm- b l e'/¢l ....

where a" and b" are c.nstants.

_4t _ohl's equation

_ T a'" c'"

v,,, -- b'" v,,, ( v,,, -- b'" ", v:',,,

where a'". b'. and c"' are constants

(5) Keyes" equation

RT
P=

Um -- Ot (t:,,g) 2

where B, t,, e, ,__nclg are ,.',,nstanls.
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(61 Beattie-Bridgeman's equation

where d. B, D, E. and F are constants.

In all these equations, vm refers to the molal specific volume. Their accuracy in correlat-

ing experimental data depends, in general, on the number of constants that may be assigned

specific values for each gas. The Beattie-Bridgeman equation of state with five such con-

stunts has been found to agree within a fraction of 1 percent with experimental data for a

number of substances over a wide range of conditions. The Beattie-Bridgeman equation

is eomplex, but it is exceedingly useful if the constants for the gas involved are known for

the range of interest. B. F. Dodge's teat, Chemical Engineering Thermodynamics, has a

tabulation of Beattie,-Bridgeman constants for a number of gases.

The Van der Waals equation may be expected to give better results than the perfect-gas

law. However, it has only two arbitrary constants and cannot be expected to duplicate

experimental data exactly, and it may be seriously in error under certain severe conditions.

The equations of Berthelot, Dieterici, Wold, and Keyes generally are not as accurate

as the Beattie-Bridgeman equation but, because of their simplicity and form, may be useful

for specific types of calculations.

If it is desired to fit experimental data with great accuracy over large pressure ranges,

the |allowing equation, known as tbe virial form of an equation of state, _s recommended

because of its flexibility:

pv.,=RT+B+ r-L-+
v,_vLt,_

where the coet_,cients B. r, and _5are temperature t u,';_'i,_._, as f_tl.ws:

RC
.q=. t';TI.¢,_---/,,, - .....

.l,r,

r= .r_7"B:k. + a_4,_.....
a B,/."

T2

7_

This virial equati_,a i_. r_:3[_y a con_enstyd su_.'mary of the datz,., h require_ a diffe:'ent set

of coefficients for e_t _t_ tcrap_.r d'_ure _s',d r:_be_ _,r_es very _::umbers,_,me for practi¢:al apr_lication.
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Thermodynemic Proi_rty Di_jmms

it is known from the phase rule that fi,r a single-_',m_p.nent system lherr :ire only tw-

independent variables required to (.ompleleJy determine tile state q)|" the sy.,_tem. ['herefore.

it is not difficult to represent mosl qff the thermodynamic" pr,)pertie._ o|' the single.component

system by means o{ a table or a two-t'oordmate graph. _ny graph or chart of therm,,dynatniv

properties is usual}y ('ailed a t!lermodynamic dia_Mratll.

[n plotting thermodynamic data. the choice of coordinates i_ arbitrary but i_ influx'need

by the manner in which the data are to be used. Some of the diagrams hi use are enth_lpy-

entropy, enlhaJpy-pressure, entha|py-specific volume, ent|talpy-temperature, and tempera-

lure-entropy. Diagrams of the enthalpy-enlropy form are common and are known as Mo|Ger

diagrams. The Mol|ier enthalpy-entropy chart is espeeially useful for a reversible adiabatic

expansion or compression pr,_cess (since the process is isentropie, it is very simple to fldlow

the process as a vertical line on the chart), a constant enthalpy process, and enthalpy differ-

ence between states.

Where there is more than one component involved, the portrayal of the data is more

difficult. For a binary system there is a maximum of three degrees of freedom, thus requiring

three coordinates, if more than two components :are involved, a complete l_,rtrayal of the

data is not feasible. The Keenan-Keyes steam tab!es and the Keenan-Kaye gas table_ are

good examples of thermodynamic tables.

The problems in constructing a thern_dynamie diagram are determining the property

values ,tt some convenient reference state anti defining the equations whk'h govern ,'.he

relation between these properties. To illustrate the extent of the problem, consider the

development of the thermodynamic diagram shown in figure 2.9. The reference values of

enthalpy and entropy used in the development of this (.hart were

h,-= 85.64 Btu/ibm

s,.= 0.6152 Btu/Ibm

measured at ,"'n,_spheric pres- tire and - 320..1. ° F.

The first step toward the construction -f figure 2/) wa_ to determine the a¢.tual gas

den',try, y. as a |unvtiqm r,f t_'mpt'ralure and presstlre. This was a_.v,nnplishe,i by tlSill_

the real-gas equation ,f _tat_-

P = RTv + ClY' + C_73 + CO s

where CI, C,_. and C:_ are temperature-dependent constants.

Dividing the above equation of state through by ./2 and rearranging yield

P RT

(;_ + C.,_T + C:_¢ = 7-_ - Y

Using the notation

P RT
.x: ,-,+ ,..,_+ c:,y'--_

y-

_2
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The r_sidual function A {:an be evaluated by varying the t mperature with _eleeted val'les

of y held ¢onstanl and a curve of A versu_ T can be plotted along lines of {.4)nstant dens.ty.

Defining Z. the compressibility factor, as the fact_r which accounts h*r real gas effe4"ts

in the P--v-T relationships, the foregoing equation yields

P= yZA + RTy and Z_ P yA

Using figure 2.10 and the la_,t two equati ms, it is p,_sslh|e to s,,,ive for the co,.ipressibildy

factor Z, and the p_ssure P at each yah e of y intersected by a ¢:msta_; t_mperature line.

With P, 7, Z, and T known, it is possibie to plot a compressibility, chart such as that shown
in figure 2.11.

The next step toward compilin$ the Mollier chart (f_. 2.9) is to determine the value of

m

Q,

-6

C
IAJ
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Figure 2.9. Mol|irr diagram for nitrogen. [Courtesy, of the in._titute ,f G,_, Technol,,gv.]
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Fixur,P 2. I O. ,._ - T diagram,

the tw. propertie._ _nthalpy and entropy at the selected value_ of pressure and tempt_rature.

-r density and temperature. The expressi.n for enlhalpy may be written as

jT.,.r,,.dr+ f,. (_), ,_' .z.3_.hr.e= h, +

Sin('e nitrogen is a pure substance, the entha]py is defined as

dk_-T_+ vd/'
J

or. on differentiating with respect to P with T held constant.

_h ' Os v

The %laxwell relation teq. I I. 13}} may be ._ub_lituted int,} the pn-ceding equati-n to ohlah)

( iOt _ _ l Ov "x
V1 =_-rt_l,. _2.zs,

This equation and the definiti.n of %,

t_h
c,, = (_-_),. ,2.36'

may be ,'.mbined with equation t2.34} to yield

r (3)f,"[hr. i. = h.+ c, dT+ t,- T -- dP (2.37)
drr 'r c_T I" T

Sin(,e the equation of state employed is in terms of density rather than pressure, it will he

advantageous to rearrange equation (2.37) as a func:ion ,,f density. To do this, the relation

Pv = ZRT is writven in differential form with the *emperature held constant. Hence,

vr dP = _ F | dZ - P dr
'r JZr= | J rr=

44
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alld

+'_ ,IP= RTIZ - 1t --_

Next. tht" lherm_dynamic relatbm

P(t, _".38p

aTJl=-_apI \_1.-'i

substituted with equati(_rt 12.381 into eqt=ation (2.37} yields

f,. (,)/,.[P T &
c,,ar + (Z- 1) -7-- ) ,, ,hr.r =h'-+ .

t2.30)

Introducing the relations t, = l/y and dv = -- d7/72, equation t2.39) becomes

J Tr

(2.40_

Using an analogous process, it (nay be shown that

F /OP_ -I

,..-7;, - / _ly-- Ins',,.r=s,.-+ c/,d (InT)+i_ , 7- Jl , t2.41_

By using the e, mqm-ssibility ('hart +fig. 2.1 I! and equari.tn_ _2.4_)1 and 12.411. it is now im._sihle

to construct the M,dl;er ,iiagranl shou'a in figure 2.9. The procedure is as f,,Ihpws:

_1_ Holding pressure u.nstant. _'_aluate h t'r, nl equati, m (2._)) and s t'r.m equation

(2.41 _at preselected vattJe_ ,d' I, r_lperature. [_epea! fi,r as [11;.111_lines .f c_mstanl prv_._,tltt,
as required.

;2t Plot the values .f h and s along the c_msta||t-pr(.ssure line_.

131 ('.r.ss-tdot lines _ff c,mstant temperatttre _n the ".'_nsla_lt-pi-eSstlre lirn._.

Low of Corresponding States

There is yet an_,ther meth,d .f c,,;,ing with real-gas deviation fr,,m perfect-ga_, behavi,r.

This meth,,t is based on the law of corresp,,nding states. The deviati.n ,ff the v.lutne ,f

real gases from that predicted by the perfect-_as la_ can be simpl:, represented by ,d,,ttin_

the ratio ,)f the a(.tual volume t,, tha! predicted t)y the perfect.gas law versus the i)re.,..,.||re
()r. in other words.

l' JDI'

RT--'--+-_ B-'_ =- Z'=- c,,mpres_ihiliiy faet,,r

P

is plotted a,. the ,,rdinate and pressure as the a|)s_issa, t',r lit+e+ ,d c-nstan! temperattlre.
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The l_w of corresponding states provides an avenue for determining the volnpressibility
factor, z, in a generalized form that is applicable to all gases.

As previously stated, the extent of deviation frotn perfect-gas behavior increases as the

region of condensation is approached. The law of corresponding states postulates that all

Figure 2. ! 2.

0 0.1 0.2 0.3 0,4 0.S 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

REDUCED PRESSURE, &r

Compressibilily factor for gases. Courtes)- of the 4merican Society qf _lechanical Engineers.]
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gases have the same P-t-T behavior at the same reduced conditions. Hence, the behavior

of all gases is correlated, not by using actual temperature and pressure but by using ratios

of those values to the temperature and pressure at the critical p,_t. in other words, the

deviation of two gases may be very different at the same temperature and pressure, but may

be the same if considered at the same temperature" and pressure relative to the region of

condensation.

The critical temperature and pressure are used as characteristics of the region of con-

densation. Thus the ratm FITs. is commonly called the reduced t_mperature iT,) and

similarly P/Pc is the reduced pressure (P,;.

Figure 2.12 is an example of the type of compressibility factor charts commonly fimnd in

the literature: generally, lines of constant reduced temperature. Tr, are plotted with com-

pressibility fact. r as ordinate and reduced pressure, P,, as abscissa. In order to use these

charts to find the compressibility factor for any g_, it is neces_ry to know only the critical

temperature and pressure.

This method of correlating P-v-T data has been found to be of considerable value,

especially in those cases where the available information is insufficient to evaluate the con-

stants in an equation of state such as the Beattie-Bridgeman equation. The accuracy of the

generalized charts depends on the type of gas and the pressure and temperature. Dodge

has made a rather comprehensive comparison of the charts with actual data. His results

indicate a maximum deviation of 15 percent and an average deviation of about 2 percent for

263 individual cases covering a wide range of pressure and temperature and 18 different

gases. Table 2.4, from Getman and Daniels, shows the value of the compressibility factor

chart (frequently referred to as "Hougen and Watson chart").

TABLE 2.4. -- Comparison of Compressibility Factors

Pv/RT for nitrogen at 1000 arm

Obserw-d ideal Berthtdo! Hougen and
_, atson chart

2.0632

.9285

1.00_'0

1.0000

_'an der Waals }

2.426

2.182

0.731

1.071

2.10

1.95

Joule-Thomson Effect

The unre,_trained expansion of a gas is known as free expansion, and with no restraint,

no useful work is done. Under flow conditions, free expansion is known as throttling, and

the change in gas temperature is known as the Joule-Thomson effect. The Joule-Thomson

effect has an important industrial application in the cooling and liquefaction of gases. It is

the deviation horn perfect-gas behavior that makes these applications possible. For an ideal

gas, the enthalpy is independent of pressure: hence, no change in temperature occurs in

free expansion for the flow or nonflow case. However, for the real gas, significant changes

in temperature may occur with free expansion•

Consider the flow of a real gas through the orifice restriction of figure 2.13. For the

system shown, there is no work crossing the system boundary, and it is reasonable to neglect
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heat iraizMcr, h,r Ihis s,.siem, tht' tirol law ellelgy t'ql,ati.n may be writh'n in the t', rrtz

h,

where the subscript t denoies upstream conditions and the subscript 2 denotes d.wnstreanl
condition_.

Systemi.... i

' I IL_, ..... ........... _ ,..,..,_ _

t 2

FilKm'v 2.13. (;a_ lto_in_ dlr-u_h an -rifi,'t, in

a pipe,

,As the gas flows through the restriction, there is a decrease in pressure and an increase

in specific volume with a corresponding increase in kinetic energy: however, the increase

in kinetic energy is often negligible. For a situation where changes in kinetic energy, are

negligible, the throttling process may be considered isenthalpic.

_=z h2 _.. C_HrlSt_tlrlt

It is for this process that the 3,:,u!t'-Th_,m_'_,n coefficient is significant.

The Joule-Thomson experimrnt consists esst-ntially -f art adiabatic: expansion ,f a ga_

through a line restriction. The experiment shows that though the enthaipy is constant for

the pnwess, a vhange in temperature acc4mlpanies the expansion. Thelemperature change

is found to be equal to the change in pres,ure ac,,_-_.s the restriction muhiplied by the Joule-

Thomson coefficient, which is defined by the equation

- IDT\
" \ _I/" i I,

The Joule-'l'h_lnls_m c_le_cient is the change in temperature with respet't to pressti/e duri;lg
an isenthalpic pnwess.

Consider the exlian_i.n of a gas from t:,oi:_t ,4 io p.int B ahmg the i't_nstant enthalpv li,_

_,f figure 2.15. The changes in temperatt_re and pressllre be.tween points .4 and B may be

related by the expressi(>n

AT+ : _ l'l_,)APin (2.42)

For a given pressure change along the ,_,,'.:_,i; enthaipy line. the change in temperature

will be positive ,,r negative, depending ¢,ii _-':_-{_.,q :,! the ._I_pe .1/. The slope .l/,,i" the line
joining points .4 and B is the mean vahie .:-i the joule-]'h,_mson c(_efficient between these

points.

#.t_(mean)= .I//= Ts - Ti
P, -P,
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I"i_u re 2.1;.

Pressure, p$iG

('mifflin! v,:}:ait,_ finv f.r d

h lines of constant enthalpy are plotted on a P--T diagram (fig. 2.15), it follows that the

{i_T/aPih is the slope of the tangent to the constant enthalpy line.

Observing the line of constant enthalpy, it is evident that the slope of the curve can be

positive, negative, or zero. The points on the constant-enthalpy lines, where the slope equals

zero, are the inversion points, and the curve joining these points is the inversion curve. The

physical signifK_anee of the inversion curve is that it shows that at a given pressure there

exists a temperature above which it is impossible to have a positive Joule-Thomson coefficient.

TO illustrate, consider the press_>re P, of figure 2.15. If the temperature corresponding to

this pressure is lower than 7",,, it is possible to have a positive value of/_j, as at point b on

curve I. If the temperature is above T.. it is impossible to have positive value of/_, as

is tluslrated by l_}int c on curve 3. This is to say. T,, is the maximum temperature the

gas can have at the pressure P,, and have a positive Joule-Thomson coefficient.

The physical significance of the inversion curve is that positive Joule-Thomson coeflL

cients occur to the left of the curve and negative coe_cients occur to the right of the curve.

The inversion curve also shows the existence of a maximum inversion temperature for

each gas. This temperat_tre is represented by point d of figure 2.15 and is the temperature

above which it is impossible to cool the gas by expansion.

o

cL

"--..../ Inv@t'. on Curve

c t ,a, Cons_tm_ Enthalpy Li_e 2

r

I/i \\"_'_'1 \ Lines of Co_stont gn_halpy

I ,
I \'

Slope Jou_e-_hom$on Col_-f _ ic tent

I
I
I
I Pa

Pressure, pSio

Filt, rt- 2.15. Temperattlre _ersus [)res_ure f.ran a('lual ga_.
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CHAPTER 3

FUNDAMENTALS OF INCOMPRESSIBLE FLOW

The term "fluid" is applied to substances which, by the nature of their internal structure,

offer comparatively little resistance to a change in tbrm. Incompressible fluids, however,

offer great resistance to volume change.

No fluid is capable of any internal adjustment which will enable it to maintain equilibrium

at rest while subjected to a shear stress. If a shearing force is applied to any fluid, the

fluid will continue to move as long as the force is applied. There will invariably be some

movement in which the velocity is proportional to the applied shear stress. The relation

between foree and velocity depends on, among other things, that property of fluids known

as viscosity.

An ideal or perfect fluid is merely one which, for purl_ses of developing theory or

making a mathematical demonstration, is {'onveniently assumed to be nonviscous or in-

compressible, or both. Such fluids do not exist, and theory based on such assumption is

subject tit its applicatiqm to correcti_m for the effect of these physical properties that have

beeL_ neglected.

In this chapter, t,nly the flow of incompressible floids is c,nsidered. The effects -f

work. heat additi_,n or removal and change in s_mic veh,¢ity are neglet'ted. In an incom-
pressible fluid, an increase in pressure will not cause a significant increase in density. The

assumption that liquids are incompressible usually does not introduce a, appreciable error.

The assumption that gases arc incompressible, fnr flows below a roach number of 0.2, intro-

duces only very slight error. Beyond this point, gases should be treated as compressible
fluids.

MASS DENSITY AND SPECIFIC WEIGHT

"Mass density _" is defined as the mass of a substance per unit w_lume. Specific weight

is the gravitational force per unit volume exerled by the mass subjected to a given acceleration

due to gravity. In this text. units for density are slugs per cubic foot or pounds mass per

cubic foot. and specific weight has units of pounds force per cubic foot. The relation between

these quantities is determined from Newton's first law written in terms of gravity.

or

Fwt =mg (3.1a)

,,g,./g _3.1b}
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If I_th sides of equations _3.1a) and (3.1b) are divided by the tmal volume /Y. it folh)ws that

In this system, g, must have the units of Ibm/slug or bm-tt/lbf-._ec-. [:sing equation (3.21,
the following definitions are

Mass density= P=V slugs/ft a or lbf-secZ/ft 4 _3.3a_

Weight density= T=_ -- ibm/fta (3.3b)

Fwt

Specific weight= Y' =--_- lbf/ft3 (3.3c)

Rewriting equation (3.2) in terms of the above three definitions, the following relationships
are obtained:

T = Pg_ _3.4a)

and

Y'=Pg=v (_) (3.4b)

VISCOSITY OF FLUIDS

Viscosity is the property of a substance by which it offers resistance to shearing stresses.

In a Newton[an fluid, the viscosity is in linear proportion to the ability of the fluid to resist
such shearing stresses.

All substances, both liquids and gases, have viscosity. Because of this, the property

should be explained by one or more physical properties common to all fluids, such as molecu-

lar activity. Because of molecular activity, there is a conslant interchange of molecules

and, therefore, of momentum between adjacent layers of the fluid. If adjacent layers are

moving with different velocities, this constant interchange of momentum sets up a resistance

to any relative motion of the two layers. As a result of this resistance, energy is transformed

into heat: and to maintain the velocity, a steady force is required.

The viscosity of a liquid decreases with an increase in temperature. The interchange

of momentum is accelerated with an increase in temperature, but the viscosity of a liquid
must be regarded as the combined effect of cohesion and interchange of mementum. Cohe-

sion is the force with which like molecules of a substance attract each other. A change in

temperature has opposite effects on cohesion and molecular activity, with the effect of

cohesion being more pronounced so that as temperature is decreased, viscosity is increased

in a liquid. Because of low cohesive forces in gases, viscosity of gases increases with
temperature.
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When a sheafing force or stress is applied to elastic bodies, there is a definite deformati, m

which is proportional to the force. A shearing fi,rce applied to a viscous fluid causes an
unlimited and continuous deformation of the material. The rate at which the defi,rmation

takes place is proportional to the fi,rce. The rate of deformation or shear becomes a measure

of the viscosity of the fluid. The behavior of a substance under the influence of shearing

stresses is the criterion by which it may be classified as a fluid or solid. Any material

in which a continuous deformation is caused by a sheafing force, however small, is a fluid.

In considering the effect of viscosity on fluid flow, it is necessary to introduce two fu,_da-

mental assumptions which become the basis for the theory of viscosity. These assumptions

are:

(1) There is no relative motion between a _olid boundary and the layer of fluid in eontac!
with it.

(2) The shearing stress between layers of fluid, of infinitesimal thickness, is prop,_r6onai

to the rate of angular deformation of the fluid (Newtonian fluids).

Consider two parallel plates (fig. 3.1); one fixed and one suspended on a layer of fluid.

After applying a force F to the upper plate, the plate and the adjacent particles of fluid

will acquire a steady velocity AV.

X¥

------lp-
b b' c c'

[.,

/,/ /i////// ////// ////I

I-'_F

Figure 3.1. Detormation resulting from shear.

During some time interval, At, the fluid element, abcd, will change to the shape ab'c'd.

If the point b moves to b' in time At with a velocity AV, then the distance bb' is equal to

AV At. The fluid particles along line ab are moved during time At to line ab', and the angular

deformation can be expressed as

bb ' AVAt
Ad) _ tan A_b = a-_ -= a---_

The fluid at any position between the plates has a velocity prop_._rtional to the distance

from the lower plate. If the deformation takes place in a time At, the time rate of angular
deformation of line ab is
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d J"

dy

where I" is the velocity in :l_e _ d re,'ti_)n and y is the disidacement, oord.;nMe p ..... ,rnd:cul'_r

'.o both _he flow apd/he boundn:g surfaces of the layer.

Then. f.r a Newlonian fi:,id the shear stress, r. at a given la_er is. b, definitiot, i_+,;;mr

tional to the ra._e of angula, def(,rmath,n {,r veh)('ity gradient at that layer. -.o that

L.w.qJP_,

*

The term/_ is the coefficien| of propott.ion,ality and is called the absotute viscosity or ¢_fli-

cient of absolote vi.wosity.

In the E_,_iish system of units, equation A3.5) requir, s ._at the units of vi._ os;ty b,

lhf-_¢/ft'.

At, ,tlterhatC h;r._, _,f expressing the _is.':'_i'v "d" !iquid.' _ .'he kinematic visct:s:ty. ",vhi(.b

is defined by tht ,.quation

/.t /*go #'
......... :3._)

P 7 _,'

From etl_ati_n (3.6, it folh)ws Ih_,t tile. units t,.," k;,t,em._'_h, viscv,_ity in the E_'.i-h s_stem

are fl_/sec. The use of ki.,.wmatic viscosity i_ convem,-at in i_,,,otct_r('ssible fl_' analys{'_

_,mly). sine, _ it co:r hines tw_ _uid pr,._perty constant: ;_,to _;i_•

Figure 3.2 _b;ws a plot ;)t"visc,_s_!y _ers_:s temr+;a.'ur¢ t'_,_liquid .,,vge'L __imi!u- ('hat,s

art: presented in the appcr_dixe._ f,,r s_veral }iq:,Ms _}mi ,_:,: gases ,_t l,;_ t;e_,urr._. I',., _

extremely i-3gh gas pressures, viscosity no h_,:;cr v.,ti,.s ",_ith _emt_za_._,r," ah_|_e: pres_'e

effects em visc.osit_, ti;,_ be a_:,preciable. '!'b_-retore v,sc,.)_i!, (lat__-bas,,A o_: tcn_peratur ,_

c_;_sidelati(ms onl} n_ay Ir+_._. '.,, si_m,_it',_._ _,rror wbcn de: !ing* ith high pc,!ss_ze g;,ot-_,.

This subiect will be c,;nsid_red i,_ m,_'.- d,.tail _it_,hapter _.

RELATION OF PRES_JRE TO EL{VA'I'ION

The effect ,d' change ia e}evati,)n ('an }_avv ;_ ve_ significar,_ effect ,m _uid-fl_)w ,_,]; ,I}a-

tivns. [be effe,:t o_."ci_";'adot_ or_ pt_:ss_re ca:_ be drtern'_ined _C,'c_,nsidering the b,rces act ing

on a •::.: body of tFe tttzid. Consider a ;'ethical Ih_d e|er,'_at o_ cr,,_--.secti,mai area .4. st,_-I_

as sh,,,,_'n _rF_:rarily as a ri,_ht cylinder in figure 3.3.

]'he _m_y vertical fl_rce_ ac6ng on _he frec ht_d_, at,, the: 6,ces F_. Fz and the weigh;. F,,_

Summing h)rccs in the verti(a[ die::; _,n yields
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_inee the *'od |'_)rt'e_ _re _implv the flui_t ,tJre,.i_ure multiplied by the ar,,a liver whit'h the

prt.._urt, i_. ,l_'tilt_L attd tit," _*'ilJ, h! |ortv _".t ,d th,, ;.,,hlmn i._ y'_" ,it y' _:. th,. _b°,_,, rv].dt.n

r¢'dtl('V_ t*,

P,! - P:,_ -- y',4: = 0

or

(A" _3.7)

"['his _hows that tht" different't" in pret_._uret4 betweep two points _eparated by a vertical

distance, z. is equal to the ._l,ecili,, v_eiglM multiplied by the differem'e in elevation. Note

that the _*pe_eift(- weight term is proporlional to den_,ity and ran a|_o vary with local gravity

ind other superimposed vertical m'eelerati.m thal are ._ummed up here as g.

SlqlADY-PlOW SllmadVltt_llS Aim slrmla_ 11J_MIS

S***_ re.v,,

The traction of a fluid is elusi6ed as steady, provided that at any poin* in the stream the
vehx.ity and all fluid pr.perties remmin invariant with time. This means that the conditions

prevmiling at a given fixed cross _eti_n of the flow Inot moving with the stream) do not

cP.ange with fin_e. For a flow to be steady

_l) The ma_s rate of tlott into the ,_ystem i_ e,,n.tant a,,.3 eq._d to the mass Itow rate ,ut

of the ._y_tem

t2) The fluid is uniform in e.ml_shion, state, and veG.'ity at the entrance and exit of
the system, and these do not vary with time

(3) The state of the fluid found at any point within the system is the ._ame at all time_

i-l) The rate at which heat amt work t'ross the boundary is e-nstant.

Streamlines msd Stl_i_m Tubes

In tile usual case of steady flow. streamlines eorrespt,nd with the paths of fluid particles.

A]_. the inca[ direction of a streamline is the velocity direction of the particles as they pass

the location. In th;s idealized concept, all partic{es entering the path described by a stream-

line will follow that streamline, thro.gh.ttt it_ length. Except for the ideal frictionless fluid,

this type of flow corresponds only with a highly laminar and viscous movement o|" fluid

which i._ moving ._o slowl) that no eddies are formed. However. even in the turbulent

high-spoed flow ,f a real fluid, streamlines ('an be defined as lines drawn evewwhere tangent

to the Inca; mean velocities.

It is i_)ssible to consider a set of streamlines whit.h f-rm an imaginary enclosure within

the flow field defined as a stream tube, as illustrated by figure 3.,$. Because of the definition

of the streamline, no fluid crosses the streamline boundaries of the stream tube. and the flow

behaves as though it were restrained within the stream tube, except for friction. The

stream tube lends itself t- very convenient application of the equations of omtinuity anti

momentum.

CONTINUITY EQUATION

Since. by definition, no fluid can enter or leave a stream tube across the walls, it is pos-

sible to write an equation expressing the continuity of flow along a stream tube. Consider
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I'ilgRr_ $.41.. l'hr _lrva,, tub,.

the _)w conditi4ms at lhe arbitrary ._ialion where the flow en)._,_-sectional area i_ 4 (fig. 3.4).

The fluid pa._._ing thr, mgh the cro._._ ._e(-ti.n tra,/erses a di._tan('e, &_. in a time interval, dr.

Theref()re. tht- v(dume of fluid pas,_inl_ throuc;h the cros_ ._e_'ti.n in time _ is just _ (Is. The

ma._._ ,,|" flui,| repre.,ented by -a (b i._ y.'f ,b. and the ma_ t£,w rate l_r unit time i_ _iml)l_

dW y.4(is
a-7= :-)¢r

sini-e d.c/tl :/,', the n()minal velocity (,f flow thr,)ugh .-I.

If _' represent_ ma_ tt()w per unit time, the law of ('.n,_er)ati.n .f mas,_ re(luire_ that.

|'-r a ._ie_ady flow, u' in a stream tube be a ('on,rant. ()r

.'= _').4 ,i', = 7".'.4:1": _'- y,.IV (3.8)



l,'ilnltt .I.S. i".n-e. J, lin_..n J _lle_tm-ltibt el,'-

lilt'Ill ill '414,11d_, _IIDII_.

--,4 tiP-tag sin #-- mct = O

Makintt the fiJIowing substitutions

and

and _impIifying )ields

dV /dVXds VdV l[dl//z)l
{.It'

dz

sin 0 = -
d._

.4(IP ds +mg dz + (_) d (I'')==0

This is an enelgy relation which states thai in a frictionless system, work done by a ft_r,'e

_in this case. the force due to the differing pressures on the stream tube eleme.,::si ;s balanced

by equivalent _ han_,-s in potential energy, mg dz. and ki._,-_i,.' r,e;_y...',,,i;_'::_/'2, of the mass

acted -n. Dividin_ by mg yie]ds

•tP___._.=_4,d s +" dz _ dt_._,,,._.__,= 0
rng ,.g

Since rag= g'g/g,., it fi_lh,ws from the definition of specific wJume thai

g,g
gc

ne_ecting second-order differentials.

relati,m yields

Therefore. substittJting this relation into the flow
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which inie_rah.s. _tl con._ta.i _pet'i_i,' v.hnm., t.

P F-'

t3. IO>

f'i 13. i hti

"rhi_ i_ lh_. t.llliiliar tlt,rn,,tllli t>qi.litli,,ll f,,r .qt,ati._. friclil,nlPss im.,,mllrt, s_.it)h- fl,,w, in Iernls ,,f

fluid llcad. _il|lliipl)in_ lhr.ilgll b_i k, l i:,.) i'i>llVPl'Is life l¢,rllil Io t'lii=r_)' iilianiilies _. Ill_ti

,' (,L:),'-- _- - -i- "- = l'linMiinl [i-lbftlbm 13. I lbl

MO_INIUM EQOAIION

Newllili'S se(-.nd law sliill-s ihal the resullanl I;_rce applied i,, a fre_-l-_d._ can hi, equated

to lhe tale of i'han_e .f morli_-ntum of the biddy. Maihl-matically,

""F _- d__ (MV) (3.12a)
cII

which (-all also hi" written _ lhe inilili!._l'-Illllnlt'nlUlii lJrillciple.

-_-F dr= dIM¥ ) 13.12bi

This llrhiciple is lifli>n apldie|l hi lhl" analysis ,d' a wide _afieiv ,,i fluid d_nalnics pr.blems.

F.r fxalliltle, ill lilt- ili_le (._lllllll_li east" _|" _! ,_lt_iiii) ' tto_t in _i _'_llliilll,_il.,_ f|_l_i f'_r, Cillil.._il('li _t_

in _l _lreltin lilbe tor more pra_.iicallv, in a (,(_lndliil), lhe coniinuii) _-qualion ('an be ._iib._liiillt.d

inl- Ihe lll_lllierilillll lerm hit i.ili ill('rPnieliliil quanlilV -f fluid, din. !la,_sillg lilly ,_lalilin in ihe

._Irl'_liil. ]'hi.n (tin -: 6t lit _- [> lldt. AIs_i. |'_l" Iht' fixed ._iaibm. iile _l'loriiy is ii ('llll_l_irll _l_

ihal

il ( nil" I .- %: _flll

']'}l-n li,c .Ii_n_,, i_l i_l,_illi'lliliril lhal Iiic in.<.reillenl ,A" fluid eXl_erieilc_-_ btqlvl-t>n all) l_t_

slalioti-, iii ilie _lr_'_till i._

__tmV ! =(%r drill?---! V '.!l_.) _

al'id tilt' r/',_ililitlg t',,rce ili_il nill.-il he applie_i i- iht- itl_'r_.inenl _d ttuid betweetl the siali:tiil

rri I1._ I tie

_F dt _ {tD.zA,zVI_ d/) - l_l J(ilV 1 d/) (3.i3a)

XJs,,. siilrt _ lhe c, lniinuitv eqi_tii,ln bold._ lllroill.ql{,lil iiie len<,.,lh -ftil. slreltm iilt_t. ,_r (',mduil.
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the r¢'suhant accelerating and turning force can be evaluated in terms of the mass ;tow rate

and tile vector difference in veh_city by

_F = p_z(V., -V_) (3.13b!

This method of determining resuhant fort-cs on nozzles, piping systems, turbine blades, and

so forth, offers the great advantage q_f evaluating only the inlet and outlet flow conditi.ns

and direction, rather than the integration of very complex pressure distributions within the
fl,w section ,+f interest.

REYNOLDS NUMBER

The flow and heat-transfer behavior of fiuid_ ca_ often he c_mveniently described or

categorized by dimensionless parameters. One of the mote witls.'}y used of these parameters

is the Reynolds number. R,_. The Reynolds number can be rationally der;ved from dimen-

sional analysis and has as its defining equation

R_ = FLp (3.14_t)
#

For the circular cross section, the length dinlensi4m is the dlameter so that equation

(3.14ui becomes

R_ = I"Dp (3. IMp)
tx

The physical signifivance of the Reynolds number is ',hat it represents the rati,_ of the
inertial to the viscous for_:es acting in the fluid stream. This ratio, in turn. has a definite

effect on such factors as heat-transfer coefftcients and the coefficient of viscous friction It

is also possible to des('ribe types of fl,w in terms ,,f the Reynolds n,_mber. F, br h,w Reyn, dds

numbers the viscous forces predominate, and tlu fl,,w is t:_tmed "viscous fl._,'" or "'laminar

flow." The Reyn-lds number fi_r laminar f!_,w is generally 2000 or less. The upper limit

for laminar flow. however, is subject nb ,_,me extent to vibrati_,nal effects and perturbati, ms

in the flow stream. For a steady, laminar flow in a horizontal circular pipe. the vei,_cit_ pr,-

file is parabolic. _,i!!.. :: __iaximum velocity at the pipe venterline of

and an average velocity of

• /APj _ r z

1 .

where APt./L is the pressure drop per unit pipe length, and r is the pipe radius. Figure 3.6

shows a typical velocity profile for laminar flow in a circular pipe. For Reynolds numbers

of 4000 and above, the flow is governed primarily by inertial forces, and the veh_'ity profile

is no longer parabolic. The velocity profile has a tendency to bec.ome blunt and almost a

straight line across '.he entire pipe cross section, as shown in figure 3.7.
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l;igure 3.6. Veh,city distribution in laminar flow.

Figmr¢ 3.'/. Velocity distribution in turbulent flow.

Between Reynolds numbers of 2000 and 4000, the flow is termed "'transitional flow.'"

In this region the flow can be either laminar or turbulent, or mixed. Above about 2100

if the system is disturbed, or if there are any irregularities, the flow will change from laminar

to turbulent. In general, when the Reynolds number is above 2000, the flow is considered

turbulent to some degree.

HYDRAUUC RADIUS

Tile major part of all piping in flow systems is of round cross section, but in some in-

stances, this is not the case. Therefore. it is necessary to develop an equivalent diameter

for these noncireular pipes. This equivalent diameter is primarily for use in computing the

Reynolds number and is known as the hydraulic diameter. This hydraulic diameter of any

cross section is defined as four times the hydratdic radius, defined in turn as

cross-secti.nal area D

Rh = wet ted perimeter of cross section = 4 (3.15a

For a differential length of pipe, the wetted area is

and it fi_liows that

cbf.,= (II_'P) dL

Substituting this val-e into equation (3.I5a) yields
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N,,w, by definition, tile hydrauli_ diameter. D. is 4R,_ so that

D = 4R_, = .t-I \d4 _! q3.15/,)

FLOW OF FLUIDS IN PIPES

Fluid flowing in a pipe is constrained laterally by pressure forces at the walls, so that

the net fuid motion in the lateral direction is always zero. Conversely. axial velocity of the

fluid is controlled by axial forces on the fluid, the predominant ,nes being differential pressure,

viscous friction at the wall, acceleration, and gravity forces. The Bernoulli equation was
developed earlier in this chapter to describe the steady-flow conditions in the ideal stream

tube. The primary difference between stream-tube flow and practical pipe flow is the irre-

versible losses of energy that occur in pipes due to friction. When the Bernoulli equation

is applied to pipe flow, the loss in energy is rehected as a deviation from equation (3.lib).

The summation of the energy terms is no longer a constant at all points in the pipe. Rather,

the summation decreases progressively at points taken farther downstream. In the case

of incompressible flow, the static pressure term is the only term that can reflect the change
in total ener_ of the stream.

The phenomenon can best be described by means of the Bernoulli equation, (3.11bt,

after multiplying through by the fluid weight density y. This multiplication converts each
term of the equatiot_ to units of pressure so that

or

P+g _z+ V'z=P,

P+gpz+(1)pI/_=P, lbf/ft z (3.16_

Here P+ is defined as the total pressure of the incompressible stream. Note that gpz is the

pressure resulting from ele+ational head. z. above some datum plane. Its magnitude is

dependent ,.>n the fluid density and the local aceelerati_m resulti1_ from gravity Iplus any

superimposed accelerations that are being experienced by the entire system). The term
(._)pl;_ is the d_namir pressure resuhing fr.m velocity. It _as sh.wn in the case ,ff the

ideal stream-tube flow that there ('an be interchanges between the three pressure terms, but

the total pressure is a constant. In the case of pipe flow, the interchange between the

different h_rms of pressure terms also occurs as flow area (and. thereh_re, velocity) and

elevational head changes. However. the total of the terms diminishes persistently because
of friction and turbulence losses, and the loss is always reflected as a reduction in static

pressure. P. The interchange of pressures and the loss in total pressure may be better

understood by study _f a pressure diagram such as figure 3.8, drawn for a typk'al section

in a pipeline. Certain features of the pressure diagram sh,_uld be noted and compared to

the governing Bernoulli equation, equation t3.16).

_l) The elevation head pressure line becomes zero at !he point where the pipe centerline

interse('ts the h.rizontal elevation datum plane. ]'h;s line is straight only be('ause the pipe
centerline was drawn straight.
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Fi¢lzz'. 3.8. Pipeline _erti,,n. flow with frirli_=n.

(2) The dynanfi(' pressure term is r.nstant in the constant-flow area sections, sin('e

continuity requires ('onstant velo('ity for incompressible flow with (:onstant area.

(3) The total pressure i.ss is due to vi._cous friction alone in the constant-area sections.

In the variable-area section, the loss is due to additional turbulence and possibly boundary-

layer separation, as well as friction. In such a diffusing se(.tion, the total pressure loss and

the static pressure recovery are greatly dependent on design.

(4) It should be especially noted that even though there may be a significant loss in total

pressure across a diffusing section (as shovml with a sudden expansion, there may be a net

increase in stati(' pre._sure due to the recovery of dynamic pressure.

A reinspertion of equa',_ion 13.16) shows that fl_r the common ease of steady incompressible

fluid flow in a ronstant-;_rea pipe. the dynamic pressure H, conslallt. Then the loss in total
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pressure between two points in the pipe can be expressed as

Pn - Pr. = PI + gl_z, - Pz - glJz'.

a_ls., since tilt' I-ss is due _,nly t, vis(',,us friction, the ele_ati,u terms are insignificant in

an evaluati°m of frivtim_ ]os:es. Therefore. the p, pe van be assumed horizontal t'_,r tl_e pur-

pose .f this investigation and

P,, - p,._, = P, - p_

This establishes that the loss in t,,tal pressure in steady in,'ompressible flow in ,.,instant-

area. horizontal pipes is just equal to the slat|,' pressure loss. The s/atie pressure losses

can be determined as the product of the frictional length parameter.J (/./D). and the dynamic

pressure as folh,ws.

In the incompressible flow case. there can be no velocity change in the constant-area

pipe, and. therefore, no acceleration. Thus. the static pressure forces on a fluid element

,ff length dL can be equated directly to the viscous shear forces at the pipe wall. Then

PA -- (P + dP).4 = r d.4,-

clearing and substituting the expression G_r shear stress.

r=f,_½pV:l

tt:e relation between the two friction fa_.t.rs, derived subsequently as equation 18.17) leh. 8).

and (equati,m 3. lSb)

yields

f

\D!

(.i',ol "-'
-dP--\_ ) dL ff;.171

Integrating the pressure change ,_w-r the' pipe length. I.. yields the pressure I,,ss due to

viscmJs fricti,,n.

fL
aP"=P'-P"=[ ' (D)](_)O//_=[f(_)]"YI2. 2g,. (3.18)

Equation t3.18_ is the basis for (.4mlputing tricti,mal pressure losses f.r im',mlpressible flow

in c,mstant-area pipes. This theory applies well ,,ver a wide range of fl.v. conditions:

however, it will be seen later ,m that an accurate cstimati.n .t the friction faet,,r inv,,Ives

a thorough evaluation ,_f lhe pipe and the prevailing flow cot.dillon as described by the

Reyn,,lds nu tuber.

F,,r the case of completely laminar flow (R,. < 20(R)). an exact s_duti.n for the pressure

l,,ss _.an he _btained fr,_m the predictat*le _eh,citv distributi,m in the pipe. rl'he result is
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the Hagen-l-'oiseuille equation, written as

APt. = --
32#LV

D"
_3.19_

Substituting the definition of the Reynolds number R_=DVp/I,t and rearranging yields the

common form for computing flow pressure loss in pipes

\-_g_ / _3.20_" \Rd

FRICTION FACTOR

Equation (3.20) represents the loss in pressure because of viscous (fiction. In this

equation the value of the friction factor is given by

f=64 R, < 2000
R_

which holds for viscous, or laminar, flow only. In turbulent flow, the above relation for f

does not hold, and the friction factor must be determined in a manner so that equation (3.18)

correctly yields the pressure loss. in turbulent flow,f is found to be. a more complex function

of the Reynolds number and certain characteristics of the wall roughness that are signified

by E, e', and m. These symbols are defined: e is a measure of the size of the roughness pro-

jections and has dimensions of a length: C is a measure of the arrangement of spacing of the

roughness elements and also has dimensions of a length: m is a form factor depending on the

shape of the individual roughness elements and is dimensionless. The term f, instead of

being a simple constant, is a factor that depends on seven quantities, or

f=f,(V, D, p, It, E, E', m)

Since f is a dimensionless factor, it must depend on the grouping of these quantities into

dimensionless parameters. For smooth pipes _ = _' = m = 0, leavingfdependent on the first

four quantities. They can be arranged in only one way to make them dimensionless: namely,

VDp/#, which is the Reynolds number. For rough pipes the _ terms may be made dimension-

less by dividing by D. Therefore, in general,

', g "D'D 'm

L. F. Moody has constructed one of the most convenient charts for determining friction

factors in clean, commercial pipe. This chart, presented in figure 3.9 and, to a larger scale,

in chapter 14, is the basis for many flow calculations requiring the friction factor in all ranges

of the Reynolds number.

There is a less frequently used friction factor (shown in fig. 3.10) found in the literature.
This factor is called the Stanton friction factor and is defined by the equation relating fluid

shear stress

2
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It will be shown in chapter 8 thai the relation between the Moody and the Stanton
friction factors is

f*=f (3.21)

where f is the Moody friction factor and.f, is the Stanton friction facior. For a more detailed

discussion of the relation between these two friction factors, refer to chapter 8, "Working
Relations.'"

PRESSURELOSSES IN PIPING SYSTEMS

There are numerous sources of pressure loss in piping systems in addition to that of

fluid friction. As fluid flowing through a pipeline is caused to undergo a change in direction

or velocity, a loss in pressure is experienced due to the turbulent conversion of ener_' to

heat. The amount of this loss can, in some instances, be approximated by analytical calcula-

tion, but in most cases it must be determined experimentally.

Sudden Enlargement in Cross-Sectional Area

The pressure drop caused by a sudden area increase can he fl)und by determining the

forces acting on a system in the neighborhood of the area change. In figure 3.11 the pressure

upstream of the area change is P, and that downstream is P_.

At section 1 just downstream of the area change, the pressure is still equal to P, due to
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insufficient distance for significant pressure drop to occur. At this section the force actir)g

to the right is equal to PrAy. Further downstream the pressure has dropped to P2, and at

section 2 the force acting to the left is equal to P-,..4s. The total force acting on the section

betwee:, 1 and 2, in the direction of flow, is gzvea by

F =/12 ¢P, -- P.,)

Equating this force to the momentum change, using equation 13.13b)

or

tP, -- P:-_)A-.,--" _ t V._,-- VI )

P, -" P z = pV..(l% - V, )

Applying the Bernoulli equation from equation C.16} between l_)ints 1 and 2 and ,: f,,ir, g for
the loss in total pressure yield

APt,. = P,, - Pr2-= (P, - P_) _" ½pl l"_ - V_ )

Now. substituting the value of (P,- P2)from the pre_ ious equation int,._ ;he Ber.oulli equation
yields after combining and clearing

(3.2:2)

The velocity ratio V..,IV, can be expressed exactly as _.he area ratio .4,1A2 in incompressible

flow and also as the diameter ratio (D/D:) 2. With this substitution the expression fc,r total

pressure loss becomes the product of a geometrical factor and the dynamic pressure

.. l-@I'1_ae,,=0-_)' (_ov;)=[ I,,,I j (_,,v;> (3.23)

This is of the same general form as the pattern established by equation (3.18), the pipe

frictional pressure-loss equation. The coefficient of the dynamic pressure term is generally

defined as the total pressure-loss coefficient Kt, so that for constant-area frictional pipes,
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K,=f(L/D) and for sudden expansi:ms.

-V,I = _? :-_ 1.-i/_:.l I ,3.24)

The K, value for a sudden expansi_m as d, fined by e_iuation dL24) is plotted versus the
ratio c'f upstream t(, downstrean pipe di,_meter ia figure ?',12. Al_o sh,,wn in ihts fit:ure is

a plot h_r the sudden centractio,| in d:e flow stream. ":"he data for the second curve, h:,._,ever.

cannot Lw determined by a,alytical means, bt, l were determined from experimental aav,.

Note that the. _, factors plotted in figure 3.12 are always based on dynamic l, res_.ut¢ in lhe

smaller diameter pi_e. Th_s can be seen I.,y observing that the defining eq,.'-,l,on fi_r/(t

:eq. 3.23) is ha.,,¢d on the _'el_city, V,. If i_ i_ desired to convert the published K: factor so

as to be used with the dynamic pressure in the larger diameter pipe, the new factor must be
,'!e_iaed as

AP ., I1 . '_

Tht;', _',_ an analysis similar to the foregoing

at_,_

K,.= (V,- t',)' = (V,-V,)" (_
v:,

(3.26)

?,25 :_9,t ,:) 69 • fi
69

'\.

"...

• e',{ ,,'



T"

,,q

,p

Co I,Ii>R _,'_M( D (; 4.'; It. ! _ DI¢O__A

_nce of bnds

The rt'.,.islance of bends to the" t!,,:, ,f-In iuc-mprP._s_ble fluid can be attr'ibutt'd t_ three

factor_ lh,s,_ in_q'hartl,_Ms),

The tirst of thc'se three loss m_,lhammtt._ i., the fricti, mal fort'e_ acting _,n the iluid ,,,vr

the length of the bend, as in tb,:. ('a_e ,d' str,_i_,ht pipe frictional fl.w.

The second lo_s is the re_uh ,_f a condJti.n kno_,n a._ ,_e_'ondary flo_. Tlais js a r-taring

nv_ti,)n cir_'ulaling at right angles t,) l he pipe axi,, _'au_ed by lhe combined eft'eel ,ff pipe-wall

friction and eentrifitgal force.

The third loss i._ simply the excess loss in the portion of pipe just downstream ,,f th_

bend. This loss is the result of the increo.,,ed turbulence induced by the bend.

As in the case of friction loss and sudden area changes, the total pressure loss in bends

has been found empirie',dly to vary pnq_)rtionally with the local dynamic pressure, over the

wide range of turbulent flow eondi,:ions. Then

..Xe,,= K,_i½pJ'_lj

where K,h is the overall bend loss factor for the three combined loss mechanisms discussed

above. In the case of bends, it has been tound convenient to consider the loss factor as an

equivalent frictional length parameter.f(L/D), in this way the loss factor (.'an be separated

into tw, parts-thal attributed to eenterline length pipe friction and that attributed to the

curvature (induced seeomlary flow and downstream turhulence). Then, in terms of the

friction factor and dimensionless lengths

[ 'L' - .'L_ . L

The length. L_,, i_ the centerlin,: iengt_ of the bend, and •/shou!d be evaluated fi)r the par-

titular pipe c,-_,diti_m (¢/D) a_.d fhv_, ,,.,mdition (R,,), using the M_,od5 diagram. The length

L,, i-: lhe equival,-nt additional length thal shouht be added to account fi_r curvature- h,sses.

The value of L,, depends 4_n the radius _| cent_rline curvature, and the empirical variation

has been plotted aondimensionally on figure 3.13 as bend resistance• The friction factor

Jlur that sh_uld be" assigned to the bend equivalent length is that of complete turbulent flow

tthe horizontal part of the Moody diagram curve at high value of R,,) at the pertinent pipe wall

rough.,ess factor, ¢iD. This is due to th_ .bserved fact that the bend resistance portion of

the total bt-nd h_ss is largely unaffected by changes in the Reynolds number.

l;'igurt 3.13 provides the necessary data fi_r evaluating 90 ° bend losses and sh,)ws the

breakdown of ;he two separate c-rap,site loss factors, as well as the total ._, large-scale

phq fi,r both continuous avd miter bends is included in chapter 14.

For (',,ntinu,_us bends it has been found that the total resistance is less than that caused

by a ,mmber ,ff 90 ° bends, comprising the contint, ous bend. This is reasonable. -i:_ce the

loss i_ down, stream tangent _(_curs onl_ once in the continuous bend floweret, reas_,nable

accur3,'._ and conservative results can be attained f_,i t-ontinuous bends by considering the

bend as being the sum of the required number of 90 ° bends.
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Entrance and Exit I.os_s

L.sses due to pipe entrance and exit are the resul,' ,,f turbulence in the fluid stream

cm,sed by the entrance or exit configuration. Sin('e the¢_" is n,> length involved with an

entrance .r exit. there is no effect caused by pipe r, mghness. Hence. f.r incompressible

flows, relative size of entrance and exit does not affect the loss. and loss fact.rs are dependent

solely .n the configurati.n of the entrance or exit.

Once again, the total pressure loss is hmnd to increase iinea.'ly with dynamic pressure

in the pipe and is pr.p.rtic,nal t- a ('onfigurati.n pressure-toss factor. Then

2g,."/

where _" is the velocity just downstream of an entrance or just upstream of an exit. Values

.f K, for several c_mfigur3ti.ns are sh.wn below in figure 3.14, and more are included in

chapter ]4. "Visc_sity of l:luids.'" The reader is reminded that the static pressure changes

a('ross an entrance or exit must be evaluated with a consideration of the changes in dynamic

pressure, per equation (3.16L For example, the static pressure loss across an entrance is

the sum of the total pressure loss and the dynamic' pressure inside the pipe entrance, lAke-

wise. the static pressure loss acr¢,ss an exit into a large reserw_ir is zero.

Valves and Fittings

The pressure loss caused by standard fittings and valves installed in a pipeline varies

with the internal c(mfigurati.n .f the component. Variation due to fluid temperature and

pressure has been found to be slight, and variation with the Reynolds number in the turbulent
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flow region is insignificant. However, in the laminar flow region the loss factor must be
altered to account for an increased viscous effect.

Pressure-loss factors of valves and fittings are generally given in terms of an empirical

Kt or an equivalent pipe length, based on the inside diameter of the pipe for which the com-

ponent is constructed. The method of determining K, consists of determining the loss

across the component, measuring the velocity in the pipe adjoining the component, and

solving for the equivalent K, or L/D for the component from the equations

APa.

½pV_

or (_) = Ap,,.
¢ f(½p V 2)

where f is the .Mood_ friction factor read at high !fully turbuientl Reynolds number for the

adjacent pipe. Table 3.1 shows various L/D value_ lbund h,r several components by different

investigators. K, and other tables of L/D values for various components are to be found

in "'Viscosity of Fluids." The variations in published L/D and K, values fi)r given com-

ponents reflect the wide differences that can occur in the design of valves in the same general

category.

The equivalent lengths shown in table 3.1 are based on the pipe size tot which the

con|ponent was designed. It has been shown by tests that the pressure-drop variations

resulting from rnating the component to different thicknesses of the same nominal pipe size

are sma)i within reasonable limits. However. for calculati,mal purposes, if the pipe size is

ahered, the value of L/D fi)r the valve must also be altered. It follows that since pressure

drop varies as the second power of ihe velocity, which varies as !tie second power of the

diameter, ,'he relation between the two L/D values is

LJ= D _t_ 13.27)

The relations between the several commonly used flow factors for components are
derived and presented in chapter 10. The most important arc. for incompressible flow.
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Analysis of test data ,n the effect of end connections indicates there is little, if any,

justification for assigning different resistance coefficients to a given valve or fitting with

varying types ot" end connections. The differem'e between flanged, screwed, and welded

ends. in this respect, has been fi)und to be insignificant. The pressure drop resulting from

unions+ ,-ouplings. and flanged joints is likewise insignificant in incompressible flow.

Divergent Branches

The h_ss in total pressure resulting from flow through divergent branches in piping sys-

tems has been found experimentally to depend on the split in mass flow rate, the flow areas

involved, and the branch angle. The empirical total pressure-h,ss data are presented in

figure 3.15, along with a sketch sho_ing the system ef locating the pressure l_hnts and

branch angles. The total pressure loss is plotted versus the ratio of mass velocities for

the two sections of interest, with the branch angle as a parameter. The angle of the third

branch has insignificant effect. Then the total pressure loss between stations 1 and 2 of

the divergent branch is

=,K,, )= LT,:

Convergent Branches

Convergent branches, as depicted in figure 3.16, are handled in similar fashion, except

that the evaluation of K, requires a computation using the approximate equation

,K,:,=X + --2 cos - 2l_-i cos8 (3.2q)
• .J

Each of the ,variables ()r gt )ups of variables is e,,'aluated from Ihe data of fi_ure 3.16, and the

total pressure loss is computed by

J

OVERALL LOSS FACTORS

Lines in Series

If pipes of different sizes are connected in series as shown in figure 3.17. an overall

total pressure-loss coeffacient for the system can be derived. Adding the total pressure

losses, resulting from both friction and area change, in the circuit yields

J L [:l J l) +...

Dividing through oy the _ ynamic pressure term for the first section of pipe (_pV_l and applying

the contilmit_ eq ration for incompressible flow yield
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Then. in gen,.ra? terms, the _wera|! e.)eflit'ient fi_r total pressure loss. based ,_n lhe dynamic

pressure in the lirst section of pipe. is
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Convergent branch- functions for computing loss c,eflicient. [Courtesy of the/_rnerican Society of

.4utomotive Engineers.]

D, Kt, D ,-_ Kt3 D_

Figure 3.17. I,i.es in series.

Here, s indicates the smaller of the two pipes at the sudden area change, and K_., is read

from figure 3.12. Other types of fittings and valves can be included into the overall coefftcient

in the same manner, by including the diameter ratio factor when the device is of a different

size than the reference size.

Lines in Parallel

In the case of series lines above, the loss in total pressure for the system was found to

be the sum of the losses in the separate parts. In the case ,f parallel lines connected into

common reservoirs on both ends as in figure 3.18, the loss in total pressure is equal in all the
lines. Ti_en
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k 2

Fitture 3.18. Parallel lines.

• " 2AP,, = K,, (_pV_') =- gt2 [½pV 2 ) _ Kt, (_pv2,) ....

Also, the total mass flow rate is the sum of the flow rates in each lit:e so that

u't:t_-'t-4-1W2"4- • " "A-U',,+-' " "

It should be noted here that each of the parallel lines may be a complex series line l:aving

fittings, valves, and different-size pipes as discussed in "'Pr_ ssure Loss in Piping Systems."
If so, the individual K: factors mentioned here are the overall values for each series line K,,,

as may be obtained by means of equation (3.31_.

Proceeding, the i..dividual mass flow rates can be expressed by means of the pressure-

loss relationships above. Substituting and solving for mass flow rate in one line yield

r

w = .q _/ K, _3.32_

so that the total mass flow rate wt is
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The total flow rate can also be conveniently expressed as a ratio of the flow in s,,me arbitrary
reference line sdch as line 1. Then

and for N pipes

W,_l + A., ./K,,4...+: --. ....£- _K,._. _ X/K,,,

.-:=_ to,,;-' JK,,
tv, , \D,/ V-_r,,

(3.33)

Equation (3.32) can be written for line 1. substituted into equation t3.33k and solved fiw
AP,; as

_-. [O.'_z K_,,| 13.34)

' z,,t_,) ,_K,.J

It is also convenient to define an overall total pressure-loss coetfie_nt in the usual terms, and

involving quantities that are generally known. The most convenient form is

(3.35)

where the fictitious total or overall velocity is defined as

anti _4, is the total flow area of all the lines. After c,mbining and equatinz with equation

_3.34t• the ,_verall l.ss factor is fi_und in :erms of.nly the piping system description as

where

_ iD,,y'=±
\D, / .4,

1

Then fiw a given total flow rate and the piping system description, the loss in total pressure

{which is also the loss in static pressure between reservoirs in this case) can be computed

usi,lg equations (3.35) anti _3.36_. IAkewise. when the pressure loss is known, equati.n
i3.35) can be s,,lved explicitly for total mass fl.w rate.

It should be noted that when all the parallel lines have identical values of D and K,.

equation {3.36i predicts an overall loss factor equal to each of the individual loss factors.
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CHAPTER 4

INTRODUCTION TO COMPRESSIBLE FLOW

f"

p

Compressible flow is characterized by variation in fluid density along the flow path.
In a compressible flow there are several parameters which are most convenient in relating

fluid property changes along the flow path. These parameters are the speed of sound,

the maeh number, and the dimensionless flow parameter _. In addition, the Reynolds

number and viscosity are also used in compressible flows in characterizing flows and deter-

mining frictional lengths of piping systems.

Also involved in compressible flows are effects caused by high pressure. As will be

illustrated herein, high pressure causes variation in viscosity and hence Reynolds numbers

as well as significant variation in pressure-drop-flow rate relations. In this chapter, the

fundamental concepts of compressible flow are illustrated, and also high-pressure effects

on fluid flow are explained.
CLASSIFICATION OF FLOWS

In problems conc,_rning fluid flow, the ratio of the flow vehwity to the velocity of sound

in the media is a most convenient parameter fi_r classifying flow. This classification is

necessary, since the characteristic equations which describe the fluid properties ah,n_ the

flow path vary ,3ecording to the magnitude of the ratio

where 14 is a dimensionless ratio termed the math number, I" is the flow velocity, and c is

the speed of sound in the fluid at the local flowing conditions. The several classifications

,_f flow may be illustrated graphically by considering the first law energy equation in the
t0rm

V2
h +2-_j = h, = constant

[:sing the perfect-gas relations

dh = c_, dT, c = k,_"g_RT and

it follows that

c_ V _ c,2,

(k-l) (k-i)

kR
CV=k- 1
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where co is the maximum sonic velocity, which occurs at the stagnation (V=0) condition.

The foregoing equation plots as an ellipse as shown in figure 4.1 and, when so plotted, the

curve represents all the possible flow velocities attainable from V=0 to V= Vm,_. Also,

since the roach number ,_/varies in direct proportion to the velocity, this curve represents

all math numbers attainable from :_/= 0 to M = Mmax.

Incompressible

Co _ronsonic

Sub o0ic SonicVelo i, 

Hypersonic

V V
max

Figure 4.1. Adiabatic steady-fl¢_w ellipse.

As shown in the above figure, the different flow regimes are:

(1) Incompressible//ow.-In this region, flow velocity is small as compared to sonic

vel,_city. This region is applicable for incompressible fluids and for compressible fluids

whe_ M _ 0.3. Note that V and c changes are small in the region.

_2_ Subsonic flow.- Flow velocities in this region are higher than those for incompressible

flow', hut the velocity ratio ._/is still small, varying between 0.3 _ M:= 1. Figure 4.1 shows

that in this region changes in roach number are primarily cau,oed by changes in velocity V,

with changes in c being relatively small.

(3) Transonic flow.- Flow in the immediate area where M = 1. Differences in V and c

are small, and changes in M may be attributed to changes in both V and c.

(4) Supersonic flow.-Flow at velocities greater than sonic, .t4 > 1. In this region, sig-

nificant changes in both c and V occur causing M variation.

(5) Hypersonic flou'.- Region of high mach flow. In this region, changes in V are rela-

tively small compared to changes in c. Mach number changes are almost exclusively the

result of changes in c.
VELOCITY OF SOUND IN A FLUID

The velocity of sound in a media is simply the velocity of propagation of a pressure dis-

turbance through the media, Consider the system shown in figure 4.2 which shows a pipe

filled with a fluid and fitted with a piston in one end_

8O
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2
I I

11 A
Figure 4.2. Pressure disturbance propagated by a sudden m.vement.

If the piston is suddenly moved to the right an incremental distance dx, a pressure dis-

turbance is created which propagates to the right with a velocity c. An equivalent arrange-

ment is to consider the wavefront stationary and the gas flowing to the left with a velocity c,
as shown in figure 4.3.

I_ System boundary

r , dy c,dV II I _

h+dh el, _, i c hP+ dP p..,

L, / _..-.l t

/__
Wove front

Figure 4.1. Fluid properties change after Itowing thr.ugh wave front.

After passing through the wavefront, the gas properties have changed a differential

amount, and the gas is flowing with a new velocity (c+dV). Writing the first law of thermo-

dynamics for the system shown

(c+dV) z cz
(h+dh) 4 =h+-_

2gcJ 2&J

or by rearranging terms and neglecting the higher order differential term (dV) z,

dh t j-_- V=O (4.1)

For a steady flow, the continuity equation yields

or

(y+ dy)A (c+ dV) = yAc

Tc+ y dV+ cd_+ dV d_=yc

(4.2)

neglecting the higher order differential term it follows that

cdy+ydV=O
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Sub_itut:,ng for dF in equ_,tion t4,1_ yields

dh - c2 d_.__y= 0 14.:_
Jg,.'/

For the pure substance, the first law of thermodynamics of an open system is

Substituting. equation (4.3) may be rewritten as

Since the pressure disturbance is small, the process is nearly reversible, and since the time

involved is very small, the process is nearly adiabatic. Hence, the entropy is essentially

constant (that is, ds _- 0), and the previous relationship reduces to

or

2 /OP\
_4.4t

Equatio- (4.4) is the expression for the velocity of sound in a pure substance.

The value of the quantity ($P/$'y),, can often be obtained with sufficient accuracy from

an equation of state that relates the properties p and 3' at constant entropy. The simplest

equation relating these two properties is the perfect-gas equati-n of state. For a perfect gas

undergoing an isentropic process

(_)---- constant

or, in logarithmic differential form

Hence,

--_ -k =0

aT]_ dT V
and

For the perfect gas. P/'y= RT and

c = k/-kg_RT (4.5)

Equation (4.5) shows that the velocity of sound in a perfect gas is a function of tempera-
ture and the specific heat ratio only and is not affected by pressure.
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For :he real gas the simple expression (eq. t4.5!} does not hold and may lead to Serious

error in calculating the velocity of sound. In regions of tt:m_cralure and p._essure where "-.
real-gas effects are appreciable, more difficult P--t'-T re!ations must be used to determine "-..

the velocity of sound. As an example, consider the real-gas equation of stale

Z= "--:----= i +._.pP + CpPZ + DpP 2.
pRT

where Bp, Cp, and D_, are temperature-dependent constants. Using this equation of state,

the following expression for velocity of sound is obtained:

c2 Z2RT r c_ d ---."b-f---_ . 0Z dP

It is evident from the complex nature of this equation that a computer solution is neces-

saw and that data must be tabulated or plotted before this equation will be useful for com-

putations. Graphs of velocity of sound for various gases in the regions where real-ga._
equations of state must be used are given in the appendixes.

If charts for velocity of sound in a real gas are not available, it is possible to determine

approximate values from a Mollier diagram, or other thermodynamic charts. The method

consists of determining an exponent k,, which forces the relation

Pv k, = constant (4.6)

to hold along a constant entropy path. The value of ks thus determined is then substituted

into the equation

c_ = V'k,,g,ZR T (4.7

The quantity k, is termed the isentropic exl_:)nent and is simply a number which forces

the P-v relation of equation (4.6) to approximate accurately the local real-gas region for a

small isentropic expansion or compression. It is not a thermodynamic property and should

not be associated with the actual specific heats or the actual specific heat ratio for the real

gas.

Useful expressions for ks can be found by writing equation (4.6) in logarithmic form and
differentiating to obtain

Rearranging yields

dP

ks = _ __v = v de v {4.8)
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From the definition of density, we have
v= y -I

and on differentiating

dv=-y _ d_¢

Substituting for v and dv in equation !4.8) yields an equivalent relationship in terms _f density.

k_--=_ t4.9)

If k, is assumed to be constant over a s_; _rt isen_r,_pic process between points 1 and 2. equa-

tions 14.8) and (4.9_ can be integrated to yield

k, = _ = _ (4.10)

Good aPl_oxi;nate vaiue_ can be obtained from points read directly from expanded

tbenaodynmmie charts using equation (4.10) if the pressure change between points 1 and 2
is sma|i.

It must be pointcn _ut that the accuracy of this method in predicting velocity of _und

is greatly dependent on the accuraey of the thermodynamic chart u_d and the care with

which data points are extracted.

The value of kw is more readily computed _sing equation (4.7) when the actual sonic

velocity is known. A limited amoant _,f actual _mic velocity data is presented in the

appendixes.

Flow characteristics in compressible flo_ have been found to vary as a function of the

ratio of the velocity of stream flow to that of the velocity of sound. This ratio is termed

the roach number and is defined by the equation

,_r= v
c _4.11)

where
,14= math number

V=flow velocity at a point in the flow stream

c = speed of sound in the media measured at the fluid conditions existing at the point
where V is measured

Other convenient forms of the math number may be derived by consideration of the

continuity equation
w= _,AV _4.12a!

Solving for velocity and substituting into equation t4.11) yield
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If the g.s is perfe, q.

c == \' kg_.RT and P = yR T

l-|encQe,lu,_,':l(.I..12b)fan be writ1,_t_fortheI_rfecl_as a_

r----,--

,,=C'I{5',I
Since for circular pipe

,4=---i- _ \144!

Equation t4.12c) may be written as

P= { I.I,4)P

11 = 0.2245 _, P X_T ,,t.12d_

When the flow rme is known in terms of standard cubic feet per minute (SCFM),

t scvMM = 15.21 \l-_-_pD.Z} _J,.12ej

If flow is measured in cubic feet per second, we have the relation V= q/,4 and the roach-

number expression becomes

q_ q_
A A

:14=--= _4.12J)
c V_M,,RT

For real gases, the math number is determined from

qq H."

1I = V = --=--'4 ,4 {4.13a I
C,t C,t "_P.

[?sing the real-gas ¢quati,m of state P=TZRT. the nta,'h-number expression fi,r a real gas
becomes

or when _'rilten for cir, ular pipe and pressure in p_ia

14= 1.273 _2 14.13c1

If the flo_' unit_ are in SCF.M. the math-number expression bevomes

M =86.4 \ 1000 } pD"-c,, 14.13d!

325 {_q_ () e,_ " 8_

• . : r.'.,r-s_< ",_.-¢ ., "
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In equali,_.s (4.13i. the actual _peed ,,f _.umt can l.' i-und fr, ml ('harl_ ,,t" _t_ed ,,t _mnd f.r

the gas. -r in the absence of such charts, r. may be determined lr_ml equati,m t.l..7i.

REYNOLDS NUMBER

The Reyn_,lds number for pipe_ was defined in chapter :_ by 1he equati_,n

R,. = VDp [:_. I _/,I
/z

1"o ¢.xteud the disclt_ion in chapter 3 I_, c, mq_rt'ssible fluids, it i, ,nl_ tle_'essaD, t_ e_labli-h

convenient relations tbr determining tbe Reynolds number. Starting. with the continuity

equation and solving for the velocity,

Substituting this relationship into the defining equation for the Reynolds number yields

(w)o0
Noting that fi_r the usual case of circular pipes

A=- P2 and e=l
4 y g,.

the above relations reduce t.

(!:t "
/z = _g,.

14'

VISCOSITY

Quantitative knowledge of viscosity is required in many er_gineering problems which

inw_lve heat.transfer, mass-transfer, or pressure-loss relationships, in analysis _,f high-

pressure gas systems, experimental viscosity data are often not available for _he gas in the

region of pressure anti temperature under in';estigation. To fill this gap in the data. a gen-

eralized method of estimating _iscosity has been developed which is based on the critical

viscosity of the gas.

At low pressure, where the perfect-gas law is applicable, the viscosity ,ff a gas is primarily

dependent _n temperature, and is little affected by pressure. H0_ever. as the pressure

greatly im'reases, the vb;co._ity increases, though not nearly in prop_rtion.

If the x'iscosity of several gases is plotted in the low-pressure region versus reduced

temperature, a family of cur,,es resuhs. If each <'urve is repl,_tted as a reduced visc_sity
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tby dividing all data by the individual viscosities at the respective critical points of the gasesl.

all data are reduced t_, a single curve. From this curve the low-pressure vis,',sity of any gas

with known ,.ritical te|nperature may be determined if only the viscosity is known at the

critical point. The same procedure can be repeated at a constant high value of redu,:ed

pressL.,re, yielding a single curve shosit_g the reduced viscosity of all _ases. _y this means.

it is possible to combine the low-pressure generalizt.d viscosity curve with similar dimension-

less correlations fi_r high pressures, thereby expressing high-pressure effet'ts fi_r all gases

on a sin_e chart. Such a plot is shown in figure 4.4. All that is required t- determine the

viscosity from this figure is a knowledge of lhe critical temperature, critical pressure, and

the viscosity at the critical point for the particular gas. Figure 4.4 is reproduced tq, a large

scale in chapter 15 along with the required critical pressure, temperature, and viscosity

data. For convenience, viscosity data extracted from figuce 4.4 on the five gases-air.

nitrogen, helium, hydrogen, anti oxygen-are plotted in the applicable appendix.

The effects of high pressure on flow cart best be understood by comparing these effects

to an analysis based on a perfect gas. To facilitate such a comparison, it is convenient to

utilize a slightly modified form of the dimensionless parameter, roach number. This param-

eter is given the symbol 6 and is found for the perfect gas by multiplyi.Jg both sides of equa-

tip|! {4.12b) by the square r,_lt of the specific heat ratio to ,_btain

it, 1 _

Tlais form is convenient since 4_ can be determined fr, m readily measurable gas properties.

and independently of k and its variations. Also. it is shown in chapters 5 and 8 that this

parameter can be simply related to (,4gA_) and the frictional len_h, f(L/D), respectively.

and the ratio of do,snstream to upstream pressure, r. The relation between the three

quantities 6..4_/.4, ,_r f(L/D), and r can then be plotted f_r discrete values of h.

The effect of high pressure on the flow parameter d is limited, therefore, to the deviati_,n

in gas density in the high-pressure region from that predicted by the perfect-gas law. ._

correction fi_r density can be made by using the modified perfect-gas expression

Y = ZRT

in the development of equation I4.12b_. C_mbining this with the teat-gas ,_quati, n {4.7t

yields

6 = (M)vrk_, = _ V g,. 14.16)

._ts can be seen by examiniug the right side ,f vquati,ms (4.15b and _$.161. the only dif-

ference belween the tw- is the compressibility factor Z. appearing in the numerator of

equation _4.16t. Hence, any value _,t'Z > 1 will cause the actual 6 value to be grealer than

the perfect-gas value. As can be seen fr, m figures 8.11 thr, mgh 8.28 wh. 81. increases in

6 are aec,m_panied by decreases in the pressure ratio r and increases in pressure loss,
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Nt_te. hq,wever. Ihat th_ 4) chart f.r the* e,,rr**q.t /, 4,r /,, _ahm mu_t b,* ,i_,.d t. dc*lerrn.ne, th**

prq*per pre.<_ure- rati,, f,r a _ive'=_ r_b. It ,'an be -_een tlarth,.r lr,,m fi_ure,_ 8. i I tF, r,_u_h 8.28

that im'rra_es in /t ,_r ,_. that tlsually avv-mpa,lV inwre'asr'_, m Z hase aol ,_l_p,_,t," and m,,re

pronmnn_'ed el]'vvt ,m the pre,_ure farm. Th_-re_,r,.. _he t'ml r,-._Jh ,_t higb-lm',,_ure *'l'tevl_

_r,,_,,_ fl_ ral".



CHAPTER 5

ADIABATIC AND ISENTROPIC FLOWS

, n, m n , , -,

f

h is often convenient and realistic in dealing with compressible flow proDlems to assume

the flow to be isentropk, and one dimensional, in this chapter, the condition_ neces_ry

for the proper applk'atm_ _.,fthis type of analysis will be diseus_edo and the governing relations

for adiabatic and i.qentropic flow of both real and perfect gases will be derived. The usual

practice of referring to a reversible adiabatic flow as isentroph" will |_ 5,11owed. It should

be noted that the _naJysis developed here is generally applicable only to adiabatic and isen-

tropic flow_, and is not applicable to an,/other pr4wess.

By assuming an isentropi(, pr,_ess, it is also ass,_med that heat tran_ter t. the ttuid

is negligible (adiabatic). and there are no irrq-versibilities caused by t'ricti.n or turbulence.

The assumption of one-dimensional fl.w implies that fluid velocity and pr.perlies are ('on,rant

acr,_ss an_ cross __ection in the pipe.

'_tdiabatic fl.w ('an be as,_umed when there is a neghgible change in the stagnati, m

enthalpy of the fluid during the pr.,'ess. This assumption is u_ually n, ade when the flow

path is short relative to the flow veh.,ity .r when the pipe-wall temperature is approximately

equal to the gas _mperature.
The assumption that the fl.w is rever_ible ('an be made only in the absence of sh.('k

waves and when there is a rwgligibl(-' am.m,_ .f irreversible pres,_ure loss re.,.t|hing from

fricti.n or turbulence. Thi* as._umpti.n requires that the flow passage be relatively short

anti sm_.,th, and that there _s n) abrupt change in er.s,,-seetional ,_hape which will cause flow

separation and turbulence. Because of boundary-layer characteristics, more abrupt changes
in cross se_tion can be tolerated in nozzles than in diffusers. For this reason, subsonic

e.nvergent nozzles may have rather ._:adden reductions in area without flow separation, while

subsonic diffusers must be hmited t- sinai! :ares of area increase to prevent flo_ separation

and turbulence and ._tagnati.n pressure, i.ss.

The a, sumption ,,f one-dimensi.nal flow _ran be made when the rate of change of fluid

pr.pertie_ normal to the stream dire,:tion is negligible eompar:-d with the rate of change in
the l].w dire_.tion. In the limit, when an inSnitesimal stream tube is ,_.lsidered. the flow is

Pxactly one dimensional. However. since it is known that the fluid pr_,perties do vary over

the pipe cr,_ss s_.ction, certain average properties will be considered in making the (me-

dimensional flow assumpti.n. The re_ulting error wi'.l be amall if

t1_ The ,,hange in flow area is gradual with respect to distan_'e along the pipe axis

t2) Fbe radius -f curvature ,q"_he pipe us large relative t,, the diameter
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i3_ ]'he ,,Ph,_'itv Jnd temp_'raturr" pr-fi]e -dzape._ ar. r.l_,.t|w-],, um'han_cd tr.m .,_.ctmn

:_ _r'q ti-n ,Ih_n_, the axi_ -t" lh+' pip.

GENERAL FEATURES OF ISENT#OlqC FLOW

In ilz_e_tigatin_ isentr,,pic fh,w it i_ u_et'ul to define certain re'ft'rPm'e pr-pertir-_ that _re

cc_n_t_nt thr_tz{zh_tzt the ff+_w. ]'he m,_t u_el'u[ of the,_e referen4P pr.pertie,_ _lre the

stagnation pr.pertie_,

The _tagnatiqm prq_lmrtie._ are de_ned as the t_uid pr_pertie_ tltal wouJd |)e -b_erved

it the fluid were bp,J_zht t. rest in a reversible adiabatic proce.+_. |:_ing thi_ definiti-n,

the folk)wing gt_verning phy._ieal equati_m_ may be written for a control volume extending

between the sta_n_zthm _ection and any .ther ._e('tion in the pipe a_ _hown in figure 5.|.

Control Surface

To

ho

'+'i_ue,e ._. I. 4i,,t_+t.,I -,rla,_. l-'l ,,,+++'+'nth+' -t_ua,,z
|I,H) "++'( thai| _it|t| _III'+ -lh+'r -+++,'f+_+l)+

The steady-thaw er,_-r_y equati.n t;_r ._r; adiabati,, pr,.'e+._ with n. +-rk and n. t'hallge in
elevation of the fluid i,_

t_
h,, = .... + h = <'-nstant

2g,.! _5. I 1

The second law +,|"therm.dynami<.._ t'.r a rever,_ibh, adiabatic pr,.'ess is

,%_ ,'+= ('l)nst_Int 1._.2)

The continuity eqt. zti.n f-r steady flow is

-_ = yl/ = g,.pF (5.3)

The equati.n .f state for the given gas may be expressed in the form .f charts, tables.

,,r algebraic equati_,ns. In general, any property ('an be define,| by any other tw. inde-

pendent properties f.r a pure substance. For example.

h = h(s. P)

p=¢_(_. P)

q2
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Che dcf_niti,,n ,,f _=_ach number i_

,. [(__P']' _

The_,- equatiq,|l_ (|el'the the ('onditi(ms along _in i._enlropi_' line a_ illu_tratted in t_¢ure ._.:Z.

Lines of Constant
Pressure

Po

h ,,/Constarlt Entropy

s=s 9
$

irilKu=._.._.2. I*e;;Irt,pi¢ pr,.'_,._,_= 'za %l,,II=rr ¢|lart.

With a knowledge of twqb thermodynamic properties and the veh_'ily at any p)int on this

p£_'ess line. the v_nditions at all olber I_ints may be computed from equations IS. I) through

(5.5). Fq_r example, i.r in addition t. the velocity the temperature and presstare are known,

then the other properties (p. s. h) can he determined from the equations of state, and the

stagnation enlhalpy, weight flow. and ma_'h number ('an he determined from equations (5.1).

q5.3), and (5.5). Stagnation conditions (_ther than the enthalpy ,'an be" determined t'r-m

equations i._. [,I. since iv,. pr,,perti(,._ art' kn-wn, h,, and ._,,. The H.v, (',,nditi,,n at am .lh_.r

point in tht" I]ow _'_n be related to the statlnathm (,onditi.ns in the _ame manner, and the

pr.perties ahmg the iset|troph" line ('an be t'-und t(_ vary as shown in flgl.lre 3.3. The value

. _, P--o critical

P

Figure :;.3. "l';pl,.,ll ;r*.-,d,. Iii il,,_ pr,.p_'rtt_'- t*i;h i-.,'r_.
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_d" [ht" prc'ssure ratio that (',,rresp_nd._ to the maximum w*-i,thl flow p_r unit area is railed file

critical pre_s_:re ratio. [t _ill b_- _h,:wn later that. aJthm:gh all stah-_ sh_,wn m tigure 5.3 are

therr_mdynami('ally possible, a certain pipe shape and fl,,w area change are requtred to rea('h
the de,_('ribed flow ('onditions.

The ,'ffect of area change on isentropi¢- ft,,v, can be" iove._tigated by ,Isinl_ the differential

form of Euler's equation hbr a frk-tionless flow, neglect,ring change._ in elevation

-- d.P= pV dV _5.¢)_

and the logarithmic differential form of the continuit_ equation for a coa._tant-ma._s flow rate,

d_e+ dv
p .4 + _" -_-0 (5.7_

to obtain

.4 p

_ix_(,e an isentropi(, process is being c.nsidered, it may be written that

m_ that
dp \Op ], "

,t.4 (tP l-_-j- \ p;., / --(i -m"l_ (.5.8J,.f pV _

Now. the resuh:; ,,_ area change may be n,_ted by analyzing the effect ,,f equations f5.6)

and t5.8). F,.iuaiion 15.6) requires that the pressure always decreases in an accelerating flow

and increases in a decelerating flow. This may be stated as dPldl/< O. indicating thai the

differential_ of P and V are always opposite in sign. ['sing this result in conjunction with

equation (5.8). the hdh)wing ('om'lusions can be reached:

11) For subsonic flow t'l! < I). (Lf/dP >0: (£'f/dV< 0

12) For stlpersonic flow 1.1'/ > I). ,tf/dP < O; &_/_V >0

13) For sonic speeds l._,l--= !), (L41dP=O: d4/dV= 0

The flow conditions described by (i) and (2) above are shown schematically in figure 5.4,.

Condition (3) indicates that the area is at a minimum when the roach number is unity for a

('onstant-_veight flow rate in a one-dimensional isentropie flow.

It can be concluded from the effect ,,f area variations on the flow conditi,,ns investigated

that to accelerate a fluid from subs_mic to super._mi¢ vehwities requires a passage that

_'onverges Gw ,I//< 1. reaches a minimum area at M- l. and dtverges for M > !.

ADIAB_IIC FtOW

Before restricting the discussion t,) a reversible adiabatic fl,_w, it is de,_irai,h, t,: deter-

mine what _enerai relati.nship,_ can be obtained fi,r any adiabatic flow and with a constant-

weight fl_w rate. The discussion is restricted to the perfe['t gas and the following equations
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Sub_oa,c

fill I//4/'/C t_,iP I'.;I.. %TROPIC I.'LIIII N

P increases

V decreases

,Supersonic

I F ,

Subsonic r._ Su.personic

P decreases P increases

V increases Y decreases

a._ derived in ehapter 2. l)iscu,*._ion of adiabatic flow_ for c,m_tant-area pipe_ will be von-

tinued in _'haplers 8 and IC,.

Pv = RT

dh = % (IT

R

Ce,

"d /_

The differem'e_ between the therm,.lynami(' _lale_ attained (luring i_entr.pi(" ,,'er,_i_

irrt'ver_ible adiabatic fh,w processes are sh.wn in fi_ttre 5.5. The (.onditi_m_ wi:h th,

sub_,'rit)t 0 refer to the ist'ntropi_" stagnation location, and the conditions with the super-

._cript * refe, r t. the I_,('ati_n where 1,1---=I. It sholthl be ncpted that irreversible adiabatic'

de('eleratio, t- zero, vel,,city pr_duces a h,v,er actual pressure P. than the i_entrt_pi(' stag-

nation Drf'ssure.

['sing the _teadv-fl-w energy equati,,n (5.1). the vel,.'ity at any p,,in! may be defined as

I :: [2_z¢J ( h,, - h ) ]' "z

c/5
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Subson,:

Su per sot, i c

h

Lines of C0nstQnt

Pressure h

S:S 0

h*

To Po P_ " Po 2

_.__._; V_/29c J
.L

I
I

So $ SO S

(o) IseeWopic Acceleration or

Deceleration of a Pit,oct or

R_I GIs

(b) Typical I.eversible Adiabatic

Deceleration (_ a Perfect er RNI

Cos

12'

Po

.p

I i

S O -% " SO S

(C) Typicab Irreversible Adia-

batic Acceleration of

Perfect or Real Gas

F'iI_n, re ._.._.

T

P "_Po

' -
hP_e I i

5 O -_ • S0

(d) Isentropic a_d Irreversible

Adiabatic Acceleration and

Deceleration of a Perfect

_s (¢p = Constant)

IX|,i(<_l t_ti.d_.nii, th,_ pr,,t',,_.,,-

and f.r_1perfl'(l_:a_

[tt-- l/_,./_t/',,- J

"l'hi_ i'illi<ltilill _tl_,_> th<ll, f.r a _ivt-n ititl.;n_ilh,n t'nlh_illl._ Is,,m_.tinii.. _'illh.,t t,_l<il _.rirh_llll)_.

:ill _l<ill_ liial tlavr lli_ _<tin_' i.nlJia!ti ) tialt • lht- _aiiif vt'h_'iiy.
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Stagnation Temperature Ratio

}',,r a pcrfe_'t =,as. a us_.ful eqliatioll ,|efinin_ the slagnati_m tcnq_rr,tt.r_" f._q,iT|¢qi,'l/4,'._

_'alled I,,tal telnl,rrature_ rati- rna> be ohlain_.,t b_ rearranging ,'quatiotl 1,5.(h b,

T = 1+ -_- R,.At¢7"

S,i,¢v ,z-= _,.l[/_T, the simph" f,,rm is oblained:

which is valid for any adiabatic flow of a perfect _as. including irrew vsiblc flows.

Three Reference Velocities

Certain reference velocities which are ,'+;ilstant throug.hout an adiabatic flow l)rot'ess

have been found to be convenient in a_alysis and presentation of(:ompressible flow problems.

These vel.eities are defined as f,,ih_w_ f,,r a l,erfect gas:

t I) Y*laxirnum ,btain._ble vehwit_, b_ expansion to absolute zer,, temperature:

_5.11)

121 Sl+_ed +,t' ._ound at sta,,nali,+n tetnper.lt;Ir¢':

_2,_ Speed ,ff sound at the {',,nditi,,ns wher{' )l-= 1 :

I_ = ,.*= tg,./_.RT_), .2 t5.13!

E<lttati,n {5.13_ can be" rcarran_, +i by ,_{tbslit,_/in,_, _'+Ittation tS. lit) evilhlattq] at 11 - ]

T. _+ I
- 15.1k_

T* 2

h_ obtain

f/ 2,{ " 1' '-'

Kinematic Facto of the Energy Equation

The energy equati,m f,r adial_atic flow (eq. _5.1n (.an be written fl,r a l,er|'e_t _as in the

form

l, _ -_ "2'_,..I,'_,T :---2_,..1%T,,
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|sing. a perfect _as

CO'IIPRESSb'D L;4,_ H.,I_DBOt}i_

,'py 1 "

l ]ombiniag these relations and evaluating the energy equation at the c,nditi,_n_ ,,t' zer. _iwed.

zero temperature, and sonic spe,.d, the energ_ equation in_,qdving 1/, ,'. and/_ can be obtained.

, 9 2 /, + 1',
15.16t

11_ Dimemfionlmu; Velatil,/

Although the macil number is often a convenient paratneter, it has the disadvantages

that it is not proportioval to velocity ahme and tends toward infimty as I/ approaches V,_,x.

To overcome these disadvantages, a useful dimensionless velocity can be defined by

:_/,= l/= l�-- {5.17b
(ok _'_

J

Fr_m this defipttion, the fqdiowing relationship can be obtained:

In this equation. _" is the fluid velocity at the point under investigation and c* is the speed

of soun.] at the section where the vehwity is sonic (c* = I/*). This equatiot_ can be used with

equatfim {5.16) to obtain the following relati,,ns between ._1 and tl* for a perfect gas-

.14.2= 15.18t

M" -- 15.19)
k-I

Figure 5.3 illustrates the relative magnitudes of ,,1.1and ,i,l* in subs,,nic anti supers,,ni,' flow.

Where ._! goes to infinity at l/= I/max, _1s' has the value

.l/l* = Vm_= ( k + 1 ]'/_ 15.20}
.... c* _,k-- 11
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Adiabatic Weight Flow Relations

1"o t_btain the mass flow per unit ,irea for a real gas. the continuity :{ltlati,_n ix ",_ritten

itsing the e_lthalpy difference to specify the velocity.

_= _,V= y[2g,.J(h,,-h)] '"z _5.2i_

In order to evaluate this relation, it is necessary to have charts or tables of the thermodynamic

properties and to know the stagnation enthalpy and t_o thermodynamic properties at t',e hwa-
lion of interest.

For a perfect gas. the continuity equation can be rearranged using the perfect-gas law

and definition of roach number to relate the weight flow rate and fluid static properties to
the roach number.

Then

--= 7I"= Mc= M(kgcRT) _/2
.4

_5.22)

I'he temperature tern: cap t_e converted to the stagnation vMue b_"substituting equation (5. I0L

yielding the adiabatic flow parameter.

_5.231

ISENITROPIC F|OW

Befl_re discussing isentropic fl,w. it shoutd be emphasized that the relations discussed

above are applicable to any adiabatic flow process wher,: no work is perfornle_! on or by the

fluid. Therefor,,, they are applic:able to isentropic ireversible adiabatict flow. since this is a
special case of adiabatic, flow.

The use of the i_entr,,pic th,w assumption for t.he analysis of real gases provides some

simplification -ver the adiabatic: flow assumption. 'Only one thermodynamic property or the

velocity is required h, c,: mplelely specify the conditions at a point once the stagna:ion enthalp5

and the entr_py are known, sirwe these properties are both constants throughout the flo_ proc-

ess. However. it is still nol convenient to writ,: additional equations that will des_'ribe the

fluid properties along line, _,f _',nstant entropy -n the thermodynamic chart of a real gas. F-r

a perfect ,.,as. the first law ;.*fthermodynamic_ can be used to establish the explicit relation

ships thai describe the reladve char, ges h, fluid properties ii_ an iset:tr.pi_' process. For a
closed system.

P dl:
dQ' = T d.; :: du -'- --:: 0

J
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_u|lstituthlg Ill(" perte_'t-gas tel dh,nSbil)S

yields

qlil --: ,',, dT

.-- _ ¢'p -- it, vd

,IT t_._i)dv
T t.

This equathm can be integrated between any two ltoini#, ! anti 2, along ttle isrntropic process
line yielding

0"T'- ("7-'
--=, -- -- (5.24)

Substituting equation (5.24l into the perfect-gas eilualiorl q_t si_te to eliminate the lem-
peralure parameler pro(iu('es

,.: (d=:(,..r
_il_o, equalilln i5.251 solved for flit._, is

r., \/'l/
_S.261

and when sub_,lhilli'd inlo cquati_m t.=,.211, the dir,'_c'I relali-rl }lt,lr_,t'en h-.nil;_,ralure and pr,'_,-
stlre rrslihs:

P," I

!] [:1',)-7--: _. ,.3.27,ti

Equatit,ns (5.24), (5.25), and (5.2,)can flow be used In relate the static propertie.,, of a flowing
perfect gas at any point to the isentropie stagnation rabies

/it: -. 1

r ,_,,,-, (,,,-,_-,, lf, i_=iT:,) #3.28)

#<

£=(z_=(_y " lrV-,
e,, t,,/,,] _l = tT"_,l _5.2%

.l. i

_5.30i

1(_9
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These equatior_.; can be o,mbined with the pre, i,_u_h ,._tabli,hcd p_-rft'(.t.gas r,-lati,m_,lfip,

involving much number In produce the fidb_wing very useful i:_enlr,_pi¢ flow equations t;,r

a perfect gas.

Temperature, Pressure, and Density Ratios

Combining equations t5.291 anti 15.;_;01 wah the adiabatic tetnperature ratio of equation

(5.10)

T I + ,W

results in

and

k

!

-
y -- w,-- L _,'-_7 M'Z] k '

(5.32_

Equations (5.10), (5.31), and (5.32) when evaluated at M= 1 yield the ratios which are referred

to as the critical flow ratios. (This sh,_uld not be c_nfused with the thermodynamic properties

of a substar, ce at the critical point.) From equation 15.10_. it fidh!_s that

T _ 2
T,, k+ 1 !5.33)

and from equations (5.31) and (5.32), respectively.

k

J[)t I , ,

and
!

J5.34_

G.35;

i

Isentrapic Weight Flow Relations

The adiabatic flow parameter wq. _5.2311 (.a_ be c,,nverle_| _-i,_ ;r_-_!y _, t_'r!ns ,d" sta_nati_m

properties. Substituting equation t5.31) into equation 15.23!, it fi.liows that

1 + .11_ _5.36i

This equation shows thai for a given math number the flow is direr'fly proportional t_,

stagnatior_ pressure and inversely proportional to the sqt_are root _f the stagnation tempera-

ture. For this reason, the pert;_rmance data for_Ec,mpre_sor_, turbines, and the other _'t_mp_-

nents are often plotted using the quantity IwN,'T,)/P,, as the fl_,w parameter.

32.5- f_'9_. O (49 _8
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Since it has been sh,)wn that f,r isent:'opic one-dimensional H,w, the area is at a minimum

when M = I, the maximum flow rate per unit area w/A can be ,)brained from equation (5.36)

by setting M= 1. This yields

(5.37)

Combining equations q5.36) and _5.37), a ratio can be obtained of the flow area at any

point to the area at the section where M= 1.

A A* 1 " )

A

(5.38)

This area ratio is always equal to or greater than 1. Subsequent detailed discussions in

"Working Charts and Tables" and "Choking in Isentropic F'low" will show that for every

value of A/A* there are two values of M-one fi)r supersonic flow and the other for subsonic

flOW.

The Impulr,_ Function

In order to analyze the force on pipe walls, it is convenient to define a quantity F, called

the impulse function.

t;', = PA + p,4 V_ (5.39)

The usefulness of this function can be illustrated by applying the momentum equation to

the control volume shown in figure 5.6.

PlAt _

gcl

Control Surface

P; A 2

_(w-_2 / V 2 _ _,2A2q2_
loci

Figure 5.6. C,)nlr,)l ,.urfa('e fi,r anaDzin¢,it)'_ impulse tun('ti(m.

f

The sum of all forces on control volume is equal to the momentum out minus the momen-

tuna in. Then letting F,,z be the force exerted by the wall on the fluid,

F... + P;A, - P,.A.,.= m.4.,).'_-- _>,.4,t'_

IO2
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I"u,x:=_l'.z,I.z _- p,_:,'b_,1/_)--_p,._ .+ p;A1 F_

F+,,- F,

In this sign c,nventi+m. F_,z is the x component of the force exerted on th, + fluht by the wall,

so the force exerted on the wall by the fluid will be in the opposite direction. Theret,,re, the

force ,,n the pipe by the fluid opposite to the flow direction is equal to the downstream value

of F+ minus the upstream va!ue of Fi. If Fix is lar_'er titan F_. then the furce ,,a the pipe is

in the same direction as the fow. The protuberance in the flow was i-wlu,ied in the figme

to emphasize that the result is independent of waft shape so long as the pressure and velocity
are constant across the cross sections under consideration. Of course, if the wall shape or

protuberances cause irreversib.;lities that cannot be neglected, then the isentropic portioa

of the succeeding analysis cannot be applied.

For a perfect gas
pl'_ PkV 2

plz'z = g_RT = l,geRT

and since c _= g_kRT and ,,14= V/c
pV _= k P M _

which when substituted in equation _5.39t yields

F_ = PA(I + k,'142_ {5.40;

If ,',msideratio:_. is restricted to isentropie flow, the following dimeqsionle_s impulse function

ratio can be obtained with the use of equations i5.3it, (5.34_, and t5.381.

__F±= I "+k $P'
t5.41

WORKING CHARTS AND TABLES

Tf+ simp!if'y computation,;, the values of certain isentropic rati,'_ for perfect gases have
been charted arid t+:bulated in various references as a functi,,n _,f roach nun'.bet. Figure

5.7 sh,,_ws lhe char::cterisfic shape of tkese isentropic floe, relationships. In addition, ex

panded workin_ charts are presented in chapter 16. It shouht be noted in these charts that

the changes in density are very small up to math number of approximately 0.3. Therefore.

at low velocities, good atcurat_y is obtained in eng6neering calculations when gases are

considered incompressible.

The ratios presented are referen,'ed either to the sta_znation conditions or to the condi-

tions where :.V= 1, which are constant in a given isentropic flow situation. Therefore. the

ratio ,,f two ratios, evaluated at different points in the same flow field, will produce the property

change between the two points. F,_r example, in an isentropic tiow. if the p_css,:re and maeh

number are known at location _1t. _.nd the pressure is known at location (2), the math mtmber

arid all oti+er changes iu propertie., can be determined between th, + two locations as flfilows:
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q1 _ Read l't/P,, at +_1, and q ,_mpute t',_ - t',: (l'dl'o)

(2) (_ompute t'.,/P,,, and zt that value read .llz

{3) At :II,, read any ,_ther [)roFerty rates desired

_'._) Then if. for exan,ph'. Ih lemperature ('hangs. i_ desired, rt.ad Tt/Yo and T.,_/'i'o at

:Ill and .li_. respectively, and _.ompute

T,. i 'T'' )

l'l ( T,'T,)

Any of the other property and function changes are obtained in the same manner.

CHOKING IN ISENTROPIC FLOW

The previous observation that the weight flow per unit area goes through a maximum at

If= 1 is associated with an important phenomenon called choking. It was also ._tated pre-

viously that for every possible numerical value of (A/,4*), there are either tw_ solutions tor

math number (for !/A* > 1) which are physically possible or no solutions at all (for A/A* < 1).

The analysis of this _ituation can be facilitated by considering several area ratio_ between two

locations having math number of _I_ and M_ using figure 5.8 which was derived from equation

(5.38). For a part_e'ular upstream maeh number ._4_. and an area ratio A_[.-t.z > 1, there are,

in all cases, two posszble solm_ons for M_: but for an area ratio _4 d.4.z < 1. there are some va!ue._

of _I_ for which there are no solutions for .14',,.
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FilllUr_' 3.11. r_p. al ,-urvv_ ,,_ If: ve'r,_u,_II_ t,,r h,te,l v_,l,_.-_
,)_ _Ir_;| t',llllJ (: Ii ,I'_ Ill'If'l|

In the (-a._e._ where there are two Ims._ihle value._ ,,f II_. the one which ,.'eur_ will depend

on the ,_hap,, ,ff the passage. Since it i_ neee,_.,4ary t,_ have a mi.imum area in order t,, have

.-_mie flow, _ minimum area ,_eefion (thn_at_ is neve_ary t,, g_ from sub.._mie to Sul_r_mi("

veh),'itv _)r to go from supee .mic t..u!,,_)ni_' veh,citv tin lhe absence .ftt n.rmal sh, wk ,_ hi,'h

i._ n,,ni._entrol,i_.). Thereft)re. it' there l_ no minimum area. that is. lhe il_,w passage _',,nt||,-

u()u._ly ('()nverl,:e._. then l_)th 1,1, al;(l I,{_ n:u,_t he either _ul)s.)rtie (,r sUl)er,_,)ni('. If t/, is

._uh_onie. and _he pa_alle i._ ('onverl_enl-(|ivergent ._,) thal mi[li,num ;irt-.a i_. l)re._ent, lhell

_,I., m_,y he s,tb_,mic a._ _n _, venturi or super._onic as in a r,.'ket n,...::le. The ,_olution which

actually _wcur._ w?U depend on th_ pre,_ure ratio he_',,een the tw,, l,,,mts and v, ill he di_eu._e,l

fllrther in "'Operation of N.zzle_'" and "'N,,rmal ._h_,,k _l,'a.,e._ "" If II, is .,upe_,mw and the

pas,_age is convergenl-di,_erg_'r_l, then ,I[_ ;r_a_ b," eithec ,_u|,s,,t'i_ ,,r sttpfr_onic (|epen(liti_ orl

the th,_s svslem an(i pressures inv,.A_ed. Thi-_ pr_blem is c,m_plex and appear._ t,, have n,,

appJicatitm in pneumatic systems. Theref,_re. i.r will n,,t be discussed l:urthe¢.

In the cases whe:e 'here i,. n,, ,_,,luti,_n f.r ll.. using tbc _-Ie('te,] *alue_ _,t .I,/.-t: and tl,.

the soluti.n is ima_inar_ in the mathematical _ense. _hen _t_is occt, r_. ii is atwav_ t,,r a

case _,f reducing area. This lack ,,f a s.luti.n _igni_e_ that -I: < .l_: that is. sonic w'l_,city

would be reached at a location upstream ,,f I,_cati,,n _2) in the converging section where

•I = .4 _. Sin_e t_:/4 is a maxin_um. ,:/.!.., _ould have t_ be ;_reater than the maximum flow

rate per unit area. which i_ phy_ically imp-s_ibk'. Thi,_ phen,,men,,n is ,'ailed ch,,king and

may he _unu.arized as f.;h,_,s:

F,,r _tead._ It,,w in 3 pil;e with a _i_en area re+tttcti,,n, fhere i. ;_ maximum initial

s_A,-,_;nic math t|||mber or minituum inilial st,per...,,.m' n_..ct_ number which can

oecttr upstream ,,f the minitnt,n_ area. These c,,ndili,,ns can be identified in le-_m_

of/he math n,_._bers which _ili pr,,dt.'e 11--: 1 at the n|inim,|m sect.:n.

OPERATION OF NOZZLES

In this discussi_n, the performance oi bolh conveDzertt and c_nvergent-diver_enl n,_zzle.,

will he i,qvesligaled al,,.iz' with the effecls ,_1 chokin,.z dis('u,_sed previ,_usl,,.



t lJtU'KK.'_.';ED (, IS Ht_,I)BJ_JK

Convergent Iq_zles

( _,.t.idt.r the- n,,zzl+..h,,wn in t_Kure" ._._P. with the ha_'k pre_.ure m lilt- di.-'h:,r_._ + ,'hamb+'r

,-_+It;r_llt-d t_s • vat+p. It i, 3m+tl_tt_-t| that the _l|1_Iream ar_'J, lm _,tl_<'ie';:',y large ._,+ t||_t _h+'

l>r,_l_rtv value+ +it -;t;+ltlq,l+l 0 ++trip tilt" +t:|Knali,m I+rq_pPrtt+'.+ whh:h will remain q',_n.+talll thr,,,=;_h

+,III th+" _+,+.+,mrd i.'+elltr+,|liq' ll,)w. "Phi, furtht'r impliv+ that t|at" alp,+trP;ml +.pl+ly i-+ +.+ul_t'ient

t|) maintain Ih+" tlpmitrPam ,.,mdili+)n+ at thal t'qm+,+lanl value rt'Kardl*'m+ +,l' tt+_w. The !)rP.,+..+ure

in the exit i+ P. and lh+- ba4"k pr+.l++urt, in the exhau+t ,'haml_-r i_ P+.

V o ,,0
Po .I coltllt.

T O = ¢o_t._

I
!

I
' .... I _"-

_+ --'_-;+'----_'-" <+,-

P+ _tS

I
• J

0 Di'J,*cln'c' Alonq Nos= le

(=)

ir
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..rr_
Ae Po

l"igurr 3,0.

5

o _,po
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The effe,-t,i ,d' h,_erlnl_ the hal'k pre,l.iure I'_ ,,_t tht _ prt..l.,lire thr.tl_h,,lit th,. ll,:zeh', an,I

the weiizht tt.w rate. will be hl,_t=.ilil_,tlt-d i'ht,,.. ell;-, ;...h,,_n _r.ltihl_ al]_ in h_lirt'_ _.'J,r

an,I ._._tb, ,ire:

I ! i tiC'hell tile i'xh,lli_ll V_lllt" ii ch>_ell, iherl" is il- tt,>tt ,irltl tht" i)rt',.i,,lirt- l.i _-dqi._l:.llll Ihr,,ulh.

lllll a.-,i nlllr'd tiv p_tint ! i_n thi" _,ratlh,l.

i7) li_'heil ihl. |lal'[ prl_J_llire i_l rediici'd ._li,ghtlt. t_,,v/ ilt.iin.i ,|nit lht' ilre.l.lllrt ' in ih+"

ntl_zle lbrl_al dr.p,4 a_ the tl,_w <l_-,'eierates in ihe c,Jnvergi--nl .lt.l-lil,n. l'hr fill llre_,_lir_ • /i

i_ equal i- Pt,, ._l,'epl t'-r _nl.lll le¢ltnii_rl ttlli,, t.t_'t_(.tl ivhich will be nellh.clt',|.

l.it l"urther redll.,li.n _,f Ih_. elihallll pre_t_lillt, t,i pllillt li ('aiise..l in_-rl.a_ed ll,,_ rat(-- <li'id

ielocity, bill since ll_l_/ll_l i.,i _till Io'e_lier Itliiill the ,-riti_-ai llre-islire rali,: #"!%, lht. tt_0w i-_ ,_till

.,rabbinic thr-uidl_,ul a.'nlt P,. :: t'_

(-it If the back pre_lure i..l reduced further, the critical pre_l_ture rati- _.an be reached

where P_,= P. --- P*. "The flow i_ entirely ._ub.,l.nie in the nllule and sllnic at the exit.

ISi I_'uriher redueli(,n in ba,:k preli_lure l. vahtes ,,f el, < !_" has n_: effect .n the tt.w in

the mizile. Since the nozzle i_ entirely convergent, the exit veh_iiy c,rre_pmding t. _.ni("

veh_it!/ is the maximum vekw;t_ thai can be aehie,/ed. The exit pres.,_ure remains equal to

the entical pressure (P. = P'i. tn_ the weillht tt_,t, is independent .f the exhaust pre_l..lure

Pl,. [!nder these i.onditions, tim n-zzle is i'hoked. An,ilysi.,_ .f the .-lupers, mic expansitm

of the free iet .ulside the nozide eanm_t he. treated using one-dimensional analy,li,i and ha_.i

been ._h-wn here a,i a lagged line.

h ha._ bern ..thrown that afler ,I nozzle i._ choked, further reducti.n in back pre._sure has

n,i efi'ect lin the _.w rate. hut it i-ann-I be i_,mchtded tha. a choked n,,z#.le passe_ a fixed H,)w

rate. (:hanKe._ in the upstream c,)ndition.,_ .f pressure and temperature ('an still ,'ause

chanltles ill the II.v_ rate lly changing the I/as density/and the ,tlleel| .f _lllund in th,. lza_.

Com, eqlent-Olvergeet lloill_

it ._tlould be n.ied that conditil,n..i ili_l'lisseli hert. are n.t generally applicable t. pnell-

matte sy,_tems and are included in this text .hi) t,, _ive a hi-re c.rnplete understanding .f

the characleri._lic> of i,_entr.pi_ ll.w.

F'lir (_llil_'ergent-divertzenl fl+izzies an eXlierimenl ,,iinilar I. the one jii_l di_cti_.,_(-'d will

be ('.n_idered ihrougil the use _l[ tigure ].10. ".rhe ._tagnali-n ...ndii.,_ri at .ilali.n 0 will be

assumed fixed ,,net- aigain, and the ell'ell'is tit reducii4in lit the ba,'k pres_illre P_ ,,n tire nltzzle

pert.finance will be n.ted f.r steady tt.w.

(It _i'hen !he exhaust valve i_ ch_secl, thl-re i,_ n- ll.w and the I_,re_sllre i_ unif.rm

the-ugh.at tile pipe.

12) _'hen t|le hack pre._sur,- i._ redu('ed @lightly. ll.w _tabilizes after the initial pressure

disturbances, and the tlow is subs,mic throughout. As with a c-nvergent nozzle, when the

fl.w is subs|.lic, ll'le exil pressure ix equal i. ihe back pressure.

!3) Further reducti.n i:_ the bacF pressure causes increased fl.w velocities and _eigllt

flow. hut ._ince P. :> P*. the fl.w is still subs|into thr.ulzh.ut the sy._t_'m with the divergent

secti.ll acting a.,i a subs.nit diffuser, and P,, = P_.

(4) _ith sut_ciellt reduction in the back pressure, the flow rate inerease_ unt{I the

pressure at the throat is equal to the critical pressure e*. ll/hen this e.nditi-n i_ initially

achieled, the back pressure is still higher than the thr.at pressure, s,, ihe divergent p-rli_m

.f the n.zzle .., ill acls as a subsonic diffuser to increase the pressure _f the stream t. the back
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Po cons,, _- 0 Pt
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I

Distance klon"9 "_zz le

I"iKur¢" :).|t), ( |t.tl,l,'|_'ll_lld _ _| i'*,l_Vt'r,'t'l)! lh_t'r"_'nl n-/zle"

,_pt'r,i f i.l|.

pr_..._lir,.. _! tifi_ |.,inl. the pr_.*_tlrt- rati,, {/)../P,)), ,',,rre_l.,_id_ t,_ th,- _uh._,,.i¢ ma,'h .,ira.

I.'r dt'fin,',t t,_ .I./4" a.,I t', - t'r,. ._in,'_" the maxin.zm _ei,,_hl fl,,_ [mr tiffin area h_'_ t..,'n

n-a('h¢,l :it th,. tlnr,,_|t, l'urtlmr r,.,|i.'lh.i in tln_. ba,'k l)re._nr_ will .,,t (.han_e tht" fh,w rate -r

th,' l|r,'_,irn • ,{i_trit)nth,n in th," (',,n_,,-r_L_'nt p,,rti,,v= .| the" n,,z/.l,'.

4.S_ l{t.r_,,,., the' pr,,_._..r_.._ _*,_rr_._|),,ndi._ t,_ |N,inllt._ I. arid .S tin,. flow pattern ,'an,_t

flzlfill the. _',,r_,titi,._,_ fortor,_'-|lime..,_i.nal i.,_entropin, fh_w. 1. thi-_ _'a_e.a .,_rmal _h.('k wave

_ iil _|an|_l i. line"di_ _,r_e..r :-,_'_'li-n. and a nli_('|=_i_,|= ,,f lhe,_e ('-.dith=n_ i._ pr_'_er|ted in _'|laple',r

ft. • I... ft.. ha_'k pr_',.._nar_, r,'a¢tn¢-_ l.,int .S. t|w. _.z_ _'xpa.,l_ -_.l.'r_,,nirallv in tim _liv_.r_.nt

p,_rti,,v) ,,f ttn¢"n,,_/]¢', and tin., l)r_-_._ur_ , ratio, (!_t_,,); c=,rre_l).r|(l_ with the ._uper_onh' math

..ml.'r defined b_/.I,./-/*.

16_ l"urtlw.r r_'du('ti,,n irn |,a('k pr_'_,_ure- i=el.w P; tna_. n,, el'Teen .n the flow in a.y part

o|" the n,,z/.h.. ._:_ with t|l_- _-_.l_,'ergerlt ll.zzle, line _Ul._er'*_ni¢ expan,_ion -ul_ide -f lhe r).z.zlr

4'armor |)e treated one-(|imen_ionally, and thi_ expan_i.n i.* _h=,wn here by a jagged line.

Th_ ,10neat|on rai_'(I in "'(:h.::;og in I._'nlr.pi(" l"h,w'" _'a. n,_w [')e an.'_were(| a_ to whi,.h of

_.hs.ni¢ tzpsrream man'h nt]mht-r an_ ar_-a r;Jti,_ between tw- p_int,_ ('_nnec:ed hy a ('on-

Yr-r_'nl-di.v_'r=:e.t pipe. !; is ,_.en thai !¢. • _'tu_ic_" _irl.'nd..*.n tim hack pres_.t;re. Therefore..

i! i_ n¢('es_ar_ h, kn.w _-methin_ al.mt In.- hack |_res_ure i. ad(tizin,|| t,, a kn,,wled_e ,,f the

I.i_,-tr_'a111 ma_'h numl.'r 11_ and the area rati_ ..1,/.4: in ordf-r to ._']_'( [ tin(-" pn,p_.r _-];_ti,.)
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f',,r |1:. ._,,hnth,n._ t',,r c,m,litit,,ls _ith back pre-4_ur,,,, bet_,een

.b_P, .Jz1,1P, in 01i, ex:,mlde "Iredp,_'ll,_,_ediu chapter h.

lhe pre,_._ure,_ repre,_enl_'d

PERFORMANCE OF REAL NOZZLES

."iin,.etlo,_ in real ,u,zzl,'-_i* n,,t e,_actly-re dimen_i,,T_al an,l reversible, lhr l_rf-rmance

of real n_,/.zles ditt'e_, -_,mwwna! fr,,m the perf,,rmance predicled li_ini_ i_t.nlr,,pic relali,,n_

[his discus_|,,n will e-nsider n-zzle elticiency, nozzle discharge c.ethcient._, sharp-edged

,,ritice._. and a u_eful a|liabati,' relati,,u for determining the H,,_* ,.,,r|diti,,n,_ ,l,,_n_tream of a

choked real n,,zzle.

Nettle 14ticie_'V

Nozzle el_ciency is u_ed to relate the vehwity increase in an actual nozzle to the veh_gty

increase in an ideal isentropi¢ nozzle. If the inlet stagnation condition is designated with

the sulmerip! O. the actual a_diabatic exit conditions with the ,ubseript a, and the ideal isen-

tropic exit conditions with the subgcripz s, the nozzle effaeieney can be defined as the ratio of

actual-to-ideal exit kinetic energy.

v;

U_ir_ the steady-flow energy equation 15. !). this equation can be put in the fi_rm

h41 _ h/I

r/=/I.- h, t5.42)

The enlhalpies h,, and h, are evaluated at the nozzle-exit pressure P,.. as indicaled in figure

5.11. If analysis is restri,:ted to perfect gases, e, luali,_n t5.42) may be rearranged to any of

the fidlowin_ f,,rm_:

2g,.J = 2g,.JcpT,___2

"=c.,T,,-T., (I-_')

And sine,., for ,t perfect gas

[ ¸-'
_1 = T, = \ co/

T

.5,.43 )

The efficiency of nozzles is u,,ually high, hut the et_ciency is greatly affected by bormdary-

layer effects. Since the boundary-layer thickness depends on the Reynolds number and on

the rate of change of pressure ita the nozzle, no simple expression for ef_cieney can be derived

for m:zzles in general. Well-designed nozzles may have et_cienc!es as high as 99 percent in

11)_)



Nozzle Discharge Coeffident

The nozzle discharge coe_cient is the ratio of actual nozzle weight flow to the ideal isen-

tropic weight ['low.

Cd = w_,
w. _5.44

f

If the nozzle is operating with back pressures that cause sonic (choked) conditions at

lhe minimum area station (see "'()perati.n (_f Nozzles"). then the isentropic weight flt,w used

in the above equation is computed using the choked isentropic flow equation (5.37i. If the

pressures are such that subsonic velocity occurs at the minimum area station, then th,_ isen-

tropic weight flow is determined using the isentropic equation _5.36). evaluated at either the

throat or the exit stations. The math number can be evaluated at the selected station using

known pressures at that location and equation (5.31).

As in the case of nozzle efficiency, the discharge coefficient is a function of the Re_,nolds

number, and values of discharge coe_cients for some nozzles are presented in chapter 7.

Sharp-Edged Orifices

The flow characteristics of the sharp-edged orifice differ considerably from those of the

nozzle with the well-rounded approach. In a properly designed nozzle, the actual flow

passage very nearly approaches a minimum at the point where the nozzle area approaches a

minimum, and the actual effective flow area does not vary. significantly from the nozzle-throat

area. In a sharp-edged orifice the effective flow area is at a minimum in the vena contracta

downstream of the orifice, as shown in figure 5.12. For turbulent P,ow (R_ > I04) and small

orifice-diameter-to-pipe-diameter ratios, the size of the vena contracta is essentially con_,tant

10
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at 61 percent of the orifice area. However. it increases in si_.e as the pressure ratio across the

orifice decreases, to values less than t}_e critical pressure. Therefore. since the discharge

coefficient of the orifice is computed based on the constan', area of the orifice opening rather

than the effective flow area. the discharge coefficient and weight flow will r,ntinue to in-

crease somewhat as downstream pressure is reduced t_, va _ues below that of the criticai pres-

sure ratio. The practical aspects of this characteristic are discussed in chapter 7.

Region of
Separated Flow

I Vena contracta

Fillture 5. ! 9,. Represerttati.n q,i"fl_,wpaltern througha sharp-
ed_zed,,riti,'e.

f

Adiabatic Relations

When a convergent nozzle is installed in a pipe as shown in figure 5.13_z, it can be hypoth-

esized that the flow goes through a process somewhat like that shown by figure 5.13b. If

the nozzle is properly designed, the expansion in the nozzle from the inlet condition (1) to

the throat condition t is nearly isentropic, but the expansion into the pipe causes stagnation

pressure losses as a result of flow separation and turbulence. Even though the flow is not

isentropic, an expression using isentropic functions can be obtained to estimate the conditions

in the pipe downstream of the nozzle if the nozzle is choked.

Equation _5.37_ can be modified by the discharge coefficient so that the actual weight
flow is defined at the throat as

k'+l

_,=C,,P,,, /r-_g_( 2 _',.,k-,,

Equa,tion (5.23), which is applicab!e to any adiabatic flow regardless of irreversibilities, can

be written for the point 2 -;n the pipe downstream of the nozzle.

.'_2
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Figure 5.13. I'H_wal fl,,_ proton, fi,r a nozzh, in_talh.d in a pip..

Dividing the two equations yields

since f.r adiabali_' flow. T,, = T,.-- T...,. ]'he right ,fide of equation {5,'1"5) iS exactly the same

112
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expresshm that r'_ults tr,m_ disid:.:'g "_, i.+: 't**,pic relation t',w 1.Ii.l*}.. , qeq. t3.38b, by the

isentr_qfie ,_- ....... ':, _.P. :., leq ..... 3i i,. ',,-'.,-!'ore

(Z;-I '"2. ':fT{ _:i,

_ ;'_ [ I + (M)"} ] ' l _

_3.46!

Graphic or tabulated solutions of equation {5.461 are useful in establishing the math number

and the other flow conditions at the downstream location using lhe known {or measurable;

terms of the left side of the equation. Pot is the isentropic stagnation pressure at the nozzle

inlet: P., is the actual static pressure at the downstream location where the area is A._,: and 4,

is the nozzle-throat area. The user is cautioned to apply this tecknique only when choked

flow at the minimum area can be ensured.
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CHAPTER 6

SHOCK WAVES

p-

In this chapter the characteristics of normal and oblique shock waves are _iseussed.

Shock waves are discontinuities in fluid properties which can occur in supersonic flow.

As the names imply, normal shock waves are discontinuities normal to the streamlines,

while oblique shock waves are similar discontinuities which are not normal to the streamlines.

NORMAL SHOCK WAVES

For the purpose of the following discussion, a normal shock wave may be considered

a pure discontinuity occurring normal to the direction of fluid flow; that is to say. a normal

shock wave may be considered an extremely rapid c;lange in fluid properties occurring

normal to the direction of flow of the fluid stream and taking place over an extremely short
distance.

Description

A normal shock must simultaneously satisfy the steady-flow energy equation for an

adiabatic process, the continuity equation, the momentum equation, and the equation of
state of the fluid.

Combining the steady-flow energy equation for an adiabatic process, the continuity

equation, written for constant area, and the equation of state yield a locus of points called

the Fanno line. Combination of the continuity equation, the momentum equation, and tire

equation of state yields a locus of points called the Rayleigh line. When two of these lines

are plotted on an h-s diagram, there are two points of intersection, points .¥ and Y in fig,re

6.1a. Since these two points satisfy all four of the equations that the normal ghock must

satisfy, it can be concluded that the two intersections of the Rayleigh and Fanno lines repre-

sent the initial and final states of the gas passing through the normal shock.

As will be shown later, the roach number at points .4 and B, the points of maximum

entropy of the Fanno and Rayleigh lines, is unity. Further, it can be shown that the lower

branches of these two Nines represent supersonic velocities and the upper branches represent

subsonic velocities. Finally, it will be shown that point X represents the initial state of

the fluid passing through the shock and that fluid velocity always proceeds from supersotlic
to subsonic across the shock.
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/_onic Flow R_,,_igh Line

-_ Supersonic Flow

S

(a) Thermodynamic States Before and After Normal Shock.

AP x

Vx

/_--- Normal Shock

'IX
rj

I

I _ Vy

.,,,lh,---- APy

_---- Control Volume

(b) Control Volume for a Normal Shock.

Figure 6.1. ?':, _n,M _t_,,+'ks in pipes.

In the preceding discu,_sion, n_,rmal shock waves were discussed from a qualitative

point of view. It was stated th,_! the normal shock must simultaneously sati,fy four equa-

tions: the first law of the¢_odynamics, the continuity equation, the momentum equation,

and the equation of the fluid. These equations can be combined into functions which

describe the fluid property changes across the normal shock. In general, the equations

can be used for l:oth the perfect or real gas. However, to continue the discussion _m a

quantitative basis, it is desirable to restrict the analysis to perfect gas.
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SHOCK 11/41E,¢;

The Fanno Line

In this chapter only the Fanno-line relations necessary for an understanding of shock

waves will be developed. A more extensive analysis of the Fanno line is presented in

chapter 8.

Since the Fanno line is the locus of points describing the irreversible adiabatic flow of

a gas at constant mass flow per unit area, the adiabatic relations developed in "_diabatic

Flow" teh. 5_ can be applied. Re|_rring to the notation of figure 6.1b, the steady-flow energy

equation for an adiabatic process can be written as

or, for a perfect gas

hod: _" holt

E - To. (6.11OX--

Combining equation (6.1) with equation (5.10)

yields

To
_-=1 + (-_) M -_ [5.10]

T.__.. 1 + (_'_) M_
_6.2)

Since the alea is the same on both sides of the shock, the continuity equation "d,lds

m w

Combining equation (6.3) with the perfect-gas equation of state yields

and sipze ,'v/= V/X/-gckRT. it follows that

7_ \P_.M_.]

Solving this equation for the temperature ratio

325 994 O-e9

@-:,,tTiF3



and ,'<_tnhirtiog with equation t6.21 +ietds

",, ,,
V l+ -T-

tf).5)

Equation t6.5) is the equation ,ffthe Fanno line in terms tff P and M.

To prove that point .4 in figure 6.1a is the point where .!,f= 1. consider an adiabatic

process very close to point A. For such an adiabatic process, the steady-flow energy equa-

tion may be written as

dh + V dV=
g.j 0 (6.6)

and the continuity equation fo. constant area

or

d (yr) =

,_ d//+ Vdy=O (6.7)

The first law .f thermodynamics yields

dP
Tds= dh --

Jr

a'ld fur an infinitesimal process at point 4. the entropy goes thr-u_h a maximum.

,Is = 0 an,t

dP
dh =: --

J_,

Therefore.

(6.8)

J

k

Substituting equati_ns. (6.7! anti t6.81 int,, equation _6.61 aud s_d,dn.g f,r I/ results in

] [dP__ ,;dP

Since entropy is ( on._tant for this infinitesimal process, a more exact expression is

/i'itP_

Equati.n (6.9i is the definition _,f the vehwitv of sound, s, that the vehwity at the [.,int of

maximum entr.py is equal tu the speed <)f s_mml and .ll= 1.
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The llayleigh Line

*rhe Rayleigh line is the h)('us of points des('ribing a fri('tionless t],,_ at ¢,,nstant area

with heat transfer. If frictional effects are neglected, the forces actinv: ,,n the fl,lid c;,nstst

of pressere f,>rces only. and the forces in the flt)w direction can be equated _;th the ..hange

;.n momentum of the fluid. Referring to the notat.)n of figure 6 lb. the m,)mentttm equathm i_

AP_ -AP_ = thV. - rid/..

Rearranging terms and substituting using the continuity equati()n for a constant area yield

P.-+ o,V_ = P_ + p,,V._ f6.10:

Fo: a perfect gas, substituting pF z = klt)M * in equation (6.10) yields the Rayleigh-line expres-
siofl

Py I + kM_
_=_ (6.11)
P._ I + tfM_

By an analysis similar to that shown fi)r the Fanno line. it can be shown that the point

of maximum entropy on the Bayleigh line (point B. fig. 6.1o) is the point where M= I.

Cht_ in Properties Across a Nom_ttl Shock

The changes in pressure and temperature across a normal shock are obtained using

the relationships developed for either the Fanno or Ray!eigh lines, but first an expression

relating the upstream and downstream roach numbers which simultaneously satisfies both

functions must be obtained. This is done by equating equatk, ns (6.5) and (6.11) and rearrang-
ing to ,obtain

"- V + )',
= (6.12)

1 + k,14_ 1-4-k l/_

To ()blain an expli('it relationship for the downstream mach namber, e(luati,)n (6.12)

is solved and the two following solutions are obtained

and

Mu = l'/:r (6. ! 3)

2
<t4__4 k- 1

t6.14)

The first solution, equation (6.13), is trivial since it expresses the fact that conditions

at x and v are the same if no shock occurs. The second solution, equation (6.14_. expresses
the condition that must be satisfied between the two sides of the shock. A useful relation
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",e:_,een .l'l_ and _!_ nlay be -brained by substituting equa+'i,ln t5. 191 into equati!m i6 ]41 t,_

yi¢ Id

41 tl_
,1//ri, I I 1 t6.15)

or _!ill('e "t "' "''_ "_. -- _j tl,r an il,!]abath' prl.%_

From this. it is evident that if the flow at ._ is supersonic, the flow at t' must be subsonic.

and vice versa.

Using the relation betvleen upstream and downstream math numbers, relath_nships can

be obtained for the property change across the sht_'k in terms of the upstream roach number.

To obtain the pressure ratio, equation 16.14) is substituted into either equation (6.5) or

(6.11) to give

P__ ( 2k "_ k- I
I,_= 7:Z-i '_t / _+i 16.16t

Thl:. temperature ratio is obtained by substituting equali-n t6.14) into equation 16.2t

ill gi V _'.

[, ,]
16.17i

T: [_:+ 1>'1,_1s
L_7 :--7i i

J

[:sill7 equations (6. 16_ anti 16. 17i. tile density ratio may be _lht,lined from tile perfect-gas

equation of ._tate

7/_,,L_-: P__-_-!'__z (f). 181
3@ p.r

L

anti this equation combined with equation (6.31 yields the relation for the velocity rati,

T__y

_: y___&
Ib.lO)

Since the n-rmal shock process is irreversible, there is a loss in stagnation pressure

across the shock. To ,_btain the stagnation pressure change acr,s_ the sh_wk, note that

/' T - ' '',,_i ,,._--(t',,,}P_)(P_IP_),(Po._iP_ {:sin_ equation _5.311 l,, define 1,,._,t_ and t'o,!P_.
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'PIIU_.lTil,I116.]t,_ |'or tO_,P_., ilYll| ,'qtllt{llln tt). I i.i i. ,'linli,l_th" 1],S,lil,"r ,*i'_ll,lih,.ll,'_, tt_,' I,dh,_,it|_,

r _,_ ,-I', 7 _

it ........ '

Tt,,. downslreanl stagnath_ll prr.*sur_- _'an be rrlaled t,, lhv up,qrekHn slMi(' pre__=*urt"

by ._[lbSlilll|illE [he. ]_eli|l'll.|)i(' pressure l'_[:i|iOl|_}lip, equatb,n G.31L into t"l.lllklli,_.lli_).'2()).

yielding

P.,. [(AL_ ;l_;_/__ I ] _.!:' _{,.21,
LV, +-1I _,+ t.I

"to evaluate the in_ rea-.e in enlr-py a_'r-ss a sh.¢k, the first law ,,f thermodT, na.|i('.'_

fi,r a pert'e(,t gas is used

T ,Is=',',, ,iT-(_I/JP

di'_b,,i,,,Ithr.u_h by T -- t'r_l_ give_

'JT /{ . d/'_

[n*egrating From ¢¢>i_dilio_Iit,, } '/iehl_

/ T,_\ I,t I ':,
_b.22_

L

Further substitution using the perfect-gas relation.

R

yields

] _6.23)
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l:._ing the" t.,ltlati,,n_ f,,r T,,/T and t_,,jl* leq,. iS. lib and I._.3111 ,zn ,.xpte,_,,_m t_r the

elIlr_|)y Ill('rt'a-le ill l_'ff11_ 4_I" tilt" -_tagllatlq_il q'l,lhJJlll_ll,_ q'tllll lit, _)blaJiledl

_V - ,S.r :_ 1'1_ jr|

T,,r

P,,,,.!

,ff_.2I,i

In the. pre,_enl _'a,e. T,,u =- T.,.r _jn('e lhr How is atjiabati_, ._,j thai

J

or. after substituting the value of Po_P,_ I_Ven in tq'lllatiq)n |6._-_|).

.. \ k"_j" In [(k+ ijM_ "

J

/,:- I1. , 2/, _ /1:-I

_6 25)

(6.26)

[f equation ,6.26_ i._ analyzed, it v, ill be ._een that for a ga._ with I < k < 1.67. the entropy

_'hange is l_,_itive when tl_ i,_ greater than unity and negative when .M, is les._ than unily.

Sim'e the se_',nd law demand_ that the edlr-py eanm_t decrease in the absence of heat

transfer, the fluid velocity can change ,rely fr|,m ._upers_mic to ._ub._onic a_'ros._ the normal

._hock. Al._,,. by .b_erving equat_,n _b.2._ with _ :- _.,. it (.an be .._een II'tat Ihere is alway_

a de_'rea,_e in the i._entn,p0_" _Iagnation pre_,ture ,tt'ro._._ a ._h_s,k.

_mvtq_,nt-Oiverg_t Nozzl_

The t_enlr,_pif' ttow ,d" a perfe(-t ga._ thr_ugh a _',mvergenl-divergent m,zzle i._ de._'ribed

in _'hapler :3. H,_wew, r. a _pe('ith" range -t nozzle .utlet pre_,_ure._ between pr._'e._ line..t

I$, and i31 in figure_ ._.l_) and 6.2 Wd._ excluded, _irt_'e the._c vahae_ rann,,t be m'hieved with

i_entr-pi_- fl.w through_ut Ihe n,|,,.zle. It will be _h,_.rt here thai a ,h,-:k w._w. o,'_'ur_ ,_-me-

wh,,re within the _up,_rsovtic portion ,f Ihe n-zzle, wtnich _el)ar_.te_ tw,, i,_entrop|¢ pro_'es_ea.

_:_n,_ider lhe _:ase ,,t an intermediate n-zzle-exiI pre,sur_. P,.. a,, indicated 4_n figur,- b,2.

"['he fl_,'_ tend_ _ he i_entropic in the ,_m,,,th n,,zzle, but ._ince the end pres,ture P. ,'anzsot

be a_'hi,.ve|l in an t_entr-pi_" pr_a'e._s, the pro('e_ must ,hviou_ly Gdl,,w some irreversible

path. _/ilh the virtual absence ,f the tz_u_ irre.ver_ibilitie, cau-|ed by |'ri(-ti__n and turbulence.

the ,h,.-k pr,vide._ the ,_nly remaining irreversible me|:hanism in a sm_mth-flow nt, zzle

In general, a normal sh,,'k will ._taad ,u,mewhete within Ih..- super,,onie nozzle fdiverging

region_, pr,dtwing an abrupt _'hangr Jr, pr,pertiea. In figure 6.2 lhi._ change is reflected

by a _tep _'hange in ._tati_" l,re_ure fr, m the _uper.--mic isentr.pic line t.%. t. a _ubaonie

i._entr,,i)i_" line thai terminat,.,_ at t',, al the nozzle.exit h.r'ation. The entire irrever_ibility

-(','ur_ e_ser, tially at a point al,mg the n_,zzle-length dimensi,,n. Tberef, we. the h,.ati, ns

jtl_I upslre_tm _f the- n-rmal _h,,_'k t_. and pu,_t ,|,wnslream ,ff the _hock _r_ are the ,_anm

1.4_--,f,). Al_,,. the i_enlr,,pi,' fh_w relati-n._hip,_ _'an be u_ed b,r both priwea,e, on eith_.r

_h:h" ,d the ._h.,'k.
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l
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I ;_:'



.m

t,, the i_¢'.tr.pi¢" t|,,w .Ind :z,,rm,zl .h,-k Itt._-ti,_n._ .try. r,',ltur¢',l. -z,,'h J- th,,..,, t',,,z.d ,. , h.ip

_r-r., ]h .i.d t,':

( i*,mp;tt. I ,/ #" t'c,,n_ th," k.,._. ,tr.'j_

l¢*',z,I '.1_ l'r,,._ • _r.,pht,' ,,r t.d.tl_tted .,dLZti,,f_ ,,t ,-,ih.iti,,n ,h._,"p. whz,'h i-* }_l.t

r,ilt.itt,,. I3_i _ith th*" ,tibpl.'.lbl- .tib-.'rq)t. '_,e,- fix 16.h., h Ih

()ht_m _1_ ,;- _, hi., tt, b. ,,t 11_ 'l*illg the 13,,rl_,,il dl,,,'k *it_., ,',ltt_ti,,v; ,h I t_ ,,r It-_

gr.lphi¢-r l,lbuluted ,,dutp,n. ,."_*-e tit ! T, I. ,'h. ] 7.,

()hi.lilt tv;'.4"' .it tl,, t)v eqtt4tiolt *h.Z8). ,,r ¢t_e the ,0dv,.d e01..it.,. ,,: 2B_ _tig I/)h.

('h. lht

()blain 4v/.-I"= ( L. '_#.)l |,,/|°*_ .rod r,-,td _L f,,r Ih*- :lrea r_tli,, LI |'. ,,.,'," atai.

q.qng _he _,_hitt,_n of etlUalion 13.:18t. :_"_" fill. 16.h, :'h, I_

t*inll a ._imilar pr,,¢edure, all of the fluid pf.perlw. _'an be e,t_d_it.,h,_d thr¢,uld.,ut the.

no,hale. The i..,eutropic l_w fum_lhm,* Itabtilated ,:r plolt,*,i) .f chhipt,-r i/_ are u_,.d in the

two i_ntl_pie r_l_m.q, rememberin_ that in ti_.,e tw._ wi_m._ the qtaKn,lthm pfai_ertie._

are _.onslan! and the _tati¢ pr,,p_rl_ art- depemlent on t-eal mlwh number, The c'hanKe.

m ,tatumli_n pr.perlieq iwr,_.; the m,rm_ ,l_,_'k are e_tabliqhed by lhe m,rmal _h, wk etlUa-

th,n_ ,)( thin ('hapter. -r their graphic or tabulated **Jutkm,*

)'t_r tht- m.,v, ¢.ommon ,'a.te. where the m_ule-t-zi! pre_,,tlre iq ,per'ibm,|. atwt the _ho¢'k

l,,_'_Ition i_ .nkn.wn, _ lrial.and.err,,r _-luli,m i_ reqtlired rh,. ptn--edure i_ exa('tl,/ the

,_ame _lq ,:utlined ,tl_,vr. rx¢'epl that the ,.:,m|:tllath,n i* carried ,:tit with a,*qumed _h, wk

l,,¢,ti.,n_ l,,r more .qNn-if,-_llv. _t_..,.med wd.e_ ,,f 4r) The pr, wedtlr*" i,* retw-aled unltl

the value .( 4. th.l! will pr,_,iuce the kn,,wn e_it pre_.,ure i,, identttied.

T_ere *_ tt limitmK e_tit pre,.qttre wh.'h will _'a**.e the .,,rm_i _h._'k t,, _tand :it the

n, tz_.le e_ti*. I",,r thi_ ¢'_.e. g, = ¢..t,,f t0 -_ -|,.). et.d Ihe hmitt.lt exit |lre.t.tt.tre i'all hip etll_i[y

,'-.tahli.*he,t t',,r ,t ;_it,.n n,,zzle hy tile. _ame pr-_'e,htre .tillim-d .Ibovr, iiotinl/, that P_ _ Pc.

hrrt the *'xi! l,rr..*ttr,- ;_ r,'d,*,-,',t b,-l,._ i'_., Ih¢" .,,rm_ll ,_h,.'k I,'_t.._ ,,tltW.',r,t. I.,iv.ti._

,it the rl_,/zle-e_,lt lip. _l.d be,',,me,_ _ln ,)hlhltl_- _h,wk w:ive. There ('an he n,: varJ_tti,m in

tl0,w _,,.,tttt,,n_ within the .,,zLle 4,_ ,t r,-_ult ,,f ,'ha.g_', in exit pre_,tlr,, hel,)w tO.. l'hr tl,,w

•_tretiln ,,Itt'_l_t*" ftle n._./le ('anrz,,t be _t.tdwt',t It"Ill1'/ ,)nr-tlimellabtll.ll lll_"¢°ry whett 1),. P_

hPl';lll_e ,*t the exi_t|ell('P ,0t ,ddique *tw,,-dianen_i,,nah _h,_'k w_tve_.

Ideal n,,zzle ,,i..rallon ,)(('tlr_ when the ba¢'k l)r.'.;_tlr, i_ *'_a,'tlv that Lit the end p,,int

,_( the _tat--r,_,)nl_" i_,-ntr,,pi_- lint ,3). rhi_ l;tr,*._tlre and the. ,,!her thiid l)r,,pertie,t .it th,-

•'!it _lre" flx¢'(t by th¢" al,"'i_( / P_l)_.lle _tft',t r_lfl:' i *(./ I *). the git,_ , ,)oat,lIlt.. ;Ir.I the' .*llPer.u)rlh'

exit 111;t¢'h I'llivnh#.r id,'.lifi*-d bs P,lti_ti-rl t.%.._8)

N,,u.I.. ,,perati.g with b.i,'k pr,._..r,._ l_r,';tt,'r fly,it t': arc .aid t,, i)¢- ,,vrrexl:4nded.

at,_l wlle,_ the h,s*'k pre._.*tirt, i. le_, than t'_ the n,,zzle i.t .did t,, he tinderexpande,|.

OIIt_N! SHOCK WArtS

_lth_,;Igh It i_ tml, r-bable !ha! the u._e ,d .blique _h,,ck-w_tve analwp* w,)uld eve! be

re,lmr:'d i. thr d,'.i_;n ,,f .i p:...rtt,iti_' .v._t¢'m..,. ti.d_,r.,la.di._ ,,l th,- ,-hara,'teri._li,._ ,,f

,,bliq.e .*h:x'k wave_ i_ dr_irabh, i, .nder,,ta.,ling (',,mpre_ihl,, fl::w and :-vahlatinlz (',,n-

rtiti,_n4 which may ,,(-('a_i:,nally ,u-_,ur in pra,,ti,'e ()hliqtlr _h,)ck wave_ _|re a gener_ll f,_rm .f

di,*_'-ntinuitv in _ttper._.ni¢- tt,,w and in the iimd they _tppr,_a_'h the normal ._h,,('k wave whi,,h

wr_ ,h_, ,,-_.d i: tit,. I)revi,.l_ .--,'fi-n. ()blique _h,)(-k w;lve_ are i.:'hned t*: the fl,,w dire,-.

12_
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li,_n, alld lh,_._' ,,,.,.,_ir wh*.n .l ,_llper_oni¢' ll],,w itll,|,.l_**¢'., d 4'halll,.;e ill direcli,,n requiring a

c,,mprt.-.._i_,n ilil. h.31. The c,,t,_.,'er_,, ca_*. in which a .,Ul."r..,.lic fl,,w un,!erz,,,.._ an eXl)a,n._i,,n

durin.l,l a _'h;utl4e Ht dire¢'li,bn _'ill n,,t he c,_n._blered, bul tt _h,,,,hl l,e m,le,l that ,J .h,,ek wave

i- not p,b._ible m lhi._ ca....dm'_' il _.,,ul,l r,.qLtir+- :,_* lncr,-'a_e ;n enlr,,p!,.

_I//St_ock
Streoml me,_

V,p _ v_n /7/V

7"1/

//:

", //Vl n

c..,.., /

\\\'x\\\\\\\\\\\\\\\\ \ xx X\ "

_r

In ,,rd+-rh, ,l-rivelit,"}l,,_er,,i,t_r*.lali.,t_li_r,.hl,,l_W_h,,,'k_.lh,-,',,nlr,.l_,,lu,,.-,,fli_,|rr

¢_..3will l,e ,,,,',l.It ,h,,uhl b*" n,,l_'dlhal lhe ,,t,,._l{o,_a¢'r,,_,.Ih_" l.,u,,,l_r_,,I,t,',,,,Ir,,l

v,_lum¢, lllltl_l _lllw;i_',_ he. e,¢,tl,t.lt,'d u.*,nlll lh*- v,'h_'it,_' c,_ntp,,ne.nl n,)rll1.11 h, tfl- ,.,,nlr,,] v,_htme

•,tlrfa,'¢-. In a,hlili,,,,, il .,l,,,uhl l,_ n,,Ir,{ lh_il. ,_lth,,,t_h lh-r_" i..l {,r_..llr, -° lo,r¢'- _It If're n,,rmal

_t_} dir,-cli.|_ ,lu,. I,_ lh," l,r,'._nre ri.*.- ,_,-r,,._._ lht" _h,,ck w,,v,.. |hi.r,. _._ el,, pre...*,Ir,, l,,r,',, m

111¢"pafalh'l ,p, ,lire,'li,,n _ll,'ll|; Ibr,_,,-. {,,,iltl,._ 111 ,,,i,_,l, ,,,,," can ,_.rlh" the l,,ll,,_i,,l_ ba.,i,

r*.Iatl,,tt.-,:

l"r,,m ,',,nlinuily

p, 1,. _ i,-_.{'_.. _t_.30_

The ,'h,_n_,. i;_ m,,m,.nlllm in the. ,:, dire,'li,_n. _,h,'r*. liter,, are n,, unbalanced pre._.ure

['lirl'l,_

I p, l,,, ) { ',,. : l/_:1"-. ) 1"..,,

lh*'r,'fi,r+'.

{'rp =" 1":,, .-_ { "_. I(_.J{ I _

['_,lualinlz m,,ntenlum ,'hange._ in the n tlir,,,-li,,n h, preset|re h,rce, r,._ull_ in

P.- P,---p, |'_,- p._,l"_. :-=._h{',,. (l, - _)



D

I,

I

I.t/,IIt'RE.gNElJ _,;-IS tt I "_DBt_¢)_

h - h.., = --:- ..... 1h.33_
' 2x,.J

(;e4_me'_rical _'.n.ideri,lion .f figure" h.:_ require`._ that

I,',_ = l"p _in _r _"z. = V_ s_n 1,7"-- ,5) 16.361

if only ped'eet ga.._s are considered, the energy equation !6.33) may be rearranged using

P

anti equafion 155_1,! t. obt_in

k (e, e,.,

In _)rder I..blain a reluli.n between lhr pres._ure and densit_ befor+" and after the

_h_'k. it i_ ne_'e,_sary t- rearrange _-quati.n _6.;{2_ by _d_stituting equation {6.3(1_ to yield

(6.,38)

fr,,m _'hi_'h

P-' - lh ' 16..'{91

5imil_,rlv. f-r lhc d-_'n._tream m_rmal veh.'itv, the t.ll._-in_; a_ay be obtained

l"z =( -:,, _6.40)

Equatbms (6.39_ and ,6.14)). _hen substituted in equati,_n 16.37_. yieht the following relations

t_tw+'en the pre.-surr and d{.nsity rati.-_ her-re a;_d after the _h.,'k:

/3-_-__ k + i p-., --= k _- 1 7_ _6.-_la)

k-- I p_ k - 1 y,
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Equation I6.41 a I solved for density ratio is

(k+l P,)

-y_ p, k+l +P_
k- 1 PI

_6 41b)

Other relations for the presstire and density before and after the shock may be obtained

as a function of the shock and deflection angles and the roach numbers. To obtain these

additional relations, equations {6.31) and t6.35_ are combined to yield

_'z2 cos o r
--=.=

V1 c_,s !or- 8) (6.42)

and equation (6.30) is combined with equation _6.36_ to obtain

p_V, sin or=/>..21,1zsin (or--_) (6.43}

Combining equations i0.42} and 16:43} yields

y_ p, \V2} sin (o'--6) t cosor Lsin-(-_-_) =tan (or--6)
16.44)

Since ptl/_=P,k'II_ may be written for a perfect gas. equation {6.38} may be s_dved

for the pressure ratio as a function of the math number using the relation of equati,,n I6.361.

f': l_-t I - II_sin _cr (6.45_

Similarly. it ,'an be shown thai

_-:= I '-h 1- llZsin'-'(o'--i5) i6.46}

There are fl,ur equations ({6.,11). i6.1.4). {6.45). and i6.4611 which may be used Io relate

the six variables _r. _. }1_..ll.,_. (PJP.,!. and _y2/y_t. Consequently. these equatiqms can be

solved simuhane,,usly and soluti0rls plotted against any tw,_ independent variables.* Typical
graphs are presented as figures 6.,I. through 6.7.

The temperature change across the _,blique shock is also of interest and can be _dc_tained

from energy c,}nsiderations of the adiabatic proces_. Equati,}n 16.33) can be rewritlen as

anti

'Y., t'_ t "

_Thi_ is n,_t _'+,mpl+,tely true. sinct- P_/P, and y2/y, <'anneal be +:ho_en as the independent variable_.
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Figure 6.4.

2.0 2.5 3.0

M1, Ini'inl _ach Number

_Xave-angle variances with iritla] maeh number.

3,5

Substituting lhe definition of roach number .k/_ anti the perfect gas relationship

yields

R k-I

,..,J D

F--_-=1+ It 7 l-\l.,/

Equation (6.42) can be used to replace the velociu, r,Jio so that

7-',= 1 + t/_ 1 c°s_---_
T1 " cos" (tr -- 6) {6.47)

It is often c,Jnvenient when working with oblique shocks to transform the coordinate

system so that the normal shock tables may be used for oblique shock. This can be done

by setting J#_ sin cr equal to ll_ in a normal shock table so that P,/Px, "Yu/7_', Tu/T_:. and
Po_/Po_ are. resI_ectively, the values of P.,/P_. Ye/y_- T.z/T;. and Po.,/P,n fi_r an oblique shock
with an inclination of cr and an approach roach number of M_. In addition. {I-,e math number

downstream of the equivalent normal shock M u is equal to M., sin Io'-8) for the oblique
sh,,ck.
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t_, initial Mach Number

Figure 6.5. Finalmach-nunlber;aJiances _i_h iniliaimachnumi,er.

Characteristics of Oblique Shock Waves

In examinin_ the characteristics ,ff oblique shock waves, i! should first be noted tha|

the flo'._ deflecti,_n angle is not necessarily" equal to the deflection angle of the b_)unding sur-

face. Although this is the case for a tw_)-dimensi,mal surface as sh{)wn in figure 6.3. it is

not true. fi,r example. ,m a cone as shown in figure 6.8. In any case. h,we',er, the initial

fl()w deflection caused by the shock is 8. as defined by the ,_blique sh,_ck relations at the

observed sh.ck an_e. Consider lhe ,)blique shock relatitmships shown in figures 6.4

thr_pu_h 6.7 f.r k == 1.4. It may be seen fr,_rn these fi_nres that a _ingle s.lution f,_r a partieu-
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0o (Math Wave)
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Pressure ratio variances with initial mac|, number.

3.5

lar upstream math number occurs only for one particular flow deflection angle 8m_x. Con-

versely, a given flow de_.ection an_le is associated with only (me math nurrJber, which will

gi_e a single sol,Jtion. In m,)st case._ likely t_) be encountered in practice then. there will

be either tw,p shock-wave solutions or no so_.uti(ms at all for any given upstream math number

and deflection angle.

When two oblique shock solutio:ts are possible, they will correspond to large and small

wave angles as shown in figure 6.9. The solution with a relatively large wave angle is termed

the "strong" shock solution, while the shock with a relatively small wave angle is termed

the "'weak" shock solution. The component of the math number normal to the shock wave,

._/_ sin or, is much larger for the strong shock so it corresponds to a normal shock at a higher

roach number than does the weak solution. Therefore, the entropy loss and static pressure

rise are larger for the strong shock than the corresl_onding values for the weak shock solution.

There is no simple, clear-cut answer as to which of the two solutions will occur. The solution

which ,)(:curs will depend, at least in part, on the flow conditions downs'ream of a shock.

If an obliq,ae shock were to occur in a pipe, for example, the back pressure could control the

strength of the shock. If the back pressure were high, the strong shock solution would occur.

It has been observed that when a wedge-shaped airfoil is used in flight, only the weak shock

s()lution ()cc;srs. It should be noted in figure 6.5 that the weak shock solution is usually
followed by 3upersonie flow downstream and the strong shock solution usually produces
subsonic flow downstream.
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Figure 6.8. Oblique sh_._k on a c_me.
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Figure 6.9. Ct_mparison ,ff str_,ng and veak shocks.
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For the cases in which there is no oblique shock solution, the shock wave will be de-

tached from the point of deflection and will generally be curved as shown in figure 6.10.

The values of MI and 8 for which solutions are pcssible are shown in figure 6.11 for k= 1.4.

Occurrence of Oblique Shocks in Pipes

In pneumatic systems the flow is normally fully developed and turbulent so that the flow

field is not uniform as was assumed in the previous discussion of oblique shocks. Therefore,

there is no simple way of describing exactly how oblique shocks might occur in pneumatic

systems. However, it may be said that if supersonic flow occurs in the system due to the

variation in flow area .;n components and fittings, oblique shocks in some form will generally

have an important role in reducing the flow back to the subsonic condition. Even the simple

concept of a normal shock does not actually occur in practice when a thick houndary layer

is present. The effect of boundary-layer thickne,._s on the normal shock in a pipe is shown

in figure 6.12_. Even with a thin boundary layer, the n,,rmal shock will n,_t extend to the

wall. The rise in pressure across the normal shock tends to thicken the boundar) layer

and thereby redu(:es the mass flow per unit area near the wall. The necessary deflection

and comprc'ssion ,_f the .._uperstmi(' fl,_w ,ear the b_mndary iayer t,_ acc,,mm,,date this chang-

ing flow pattern occurs through a pair of .blique shrieks extending from the normal sh,,.k

m a lurked pattern. For thicker boundary' layers, a set ie_ cf sh,ck patterns with pr,_essively

silorter normal shocks occurs befi_re the stream is completely subsonic, as illustrated in

figure 6._2b. With this thicker boundary layer, the pressure rise across the shocks produces
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CHAPTER 7

r ow M|ASUIIEMENT

Memsumm,.nt ,,_ thr rav_, .( tt.w ,_' fluid dv,,u_ch a p_p_, i* qd'_n aa-r,,mpli.l_! with .n,,

,o[ Gmr ,_.v_,..- flu. w.nzurl ruin, tlu. llS_w n,,x_zk.. I1_. ,_rit_.,., ,.r th_ "url_mw _w.ter.

I_lr,I *w,, devwP+ ment_,nt_t _ el+'ll_nt_ whwh Ilrml_dly rr+lrwt tt_ tk,_ I+a+_

to a mimmum c_lJ+_t th+. thn_tt. Tht, .Sled r_,twt_ mere4_ tlw" t_klH| vel+_tC?. +rod tl_,

au_m'wle4 re_lurti,n in +taCit pre,_tm ,aal Ix. m_,qur_t _nd u-_,d to r,mnmpulP Iki_ ma_q

Pl,,w r4t+.. Th+, third dl-_l_'e m_+ntl++n+.d, tt_ • ,,rif_.+.. i_ 41w, ] re_tr_'ti_e elrmlent an thP _.

,+Ir_ann |)tit, in the++ r',.l,_+., the, .qr+-d +'hdl_i+ i. mhrtal)t, rhP t)ir_lrlp 111Ptrf _)r,l not t,l_.rate

l,ll _,irl+44Ul.l • dr-p. 1.0t ,u_,'a,.0r+., tl,+,v+ --h,,+ il) mml ltlll'_q I_'+W tale l'_y +i+1"111111 the +,ipl_l of

r.t+ilm)Sl .f t+ir|une, hh_+IP,+ plm'ml m lh+" 41rP+l_n,

l'lse, eqtl_llm.n,+ thai l_re_|h-I th_ ('h.l,_P Ill l_llml l)r.pert+ , ,._lU,.+e,l b+_ _i re+.+tri"l+.n pl+,.ml

+,i tl. + th,w l,alh .+re" ,i+'ri'++-,l +r,,+l,_ the _irq+. ]dw .f lhPrltl-.|yn_llnll.q when thl+. l_.v+mK tluH| l.,

v,_+tlp .'+.,hip .Jn,l ll+-rn,,,ilh',_ Pi|iJdltil,n +ht-fl th,. lh,wlnR dul+l i._ mv.ml_re.+,+ible +|'he..-

Pqu+,iti.rl,_ pr_.di,+l the lh+,_r_,tlVml rill+, l,|' l_.w dl1+| must Ira" m,_di/i,-d hy Pnlpirl,'+ll Ph,w +.,_el +.

F+vi+-nl+ t,, ,,l,t+,in the dctu,ll rJllr +.

|'he V,ll,iP ,,| th<.- II,,+ ,,,+i1+v..wt uv++'d with +';ther ,,f the .l|.,vt'-Irt+'l_tll_rle+l eqllaliorl,_

dcl-'.d+, in |i, al'! ;.11 ic;l.,l. ,,tl tin+' s_l',,ftwlr'v _,i" the l,arti,;d+,r ,|+.v.+. |)Pilt_ tl¢,P_ lllr _ow.pltt+.,4-

,stement purp..+ev+. It wdl I,+" f,,und thai th+- ,'oelhvient u,.+rd in v,,l+jtln,'li,ml with the venturi

PI'+I_P iv, v,Pr¥ flear llnity. +h.'h ir_(|i<'_te+ that the the.ry -mph++,+.,l t- <'M<'tllate venturi l_,w

r.te i_+v_',_ vPrs, Rl.)d accuracy. The lJ.w ('-elhcient r+',Itlired with the How nozzle i,+ +d+,+-

near tlnity. |l, ut llt,t v+,, l+_ea: :I+ th:II ,,f tile vf'nlt|ri tllhe. +l'h+" (',)el_l-iPnt ll._ed with th+-" -rifi,.e

lJeviateq ,',m.M+.rablv from qlnJty, mdicatin_ that .+imple the+.rv .d.nr d,)++- n.t adequately

l|e+l'ri|)P the fl.w thr,,u_.h ,m .rift,'+.

THE HYDI_AUUC EQUATION

The _-w ot"an in('.mpre.v+sihh,flUid throu_:h a ('on._tant-areapa+++dge'into whi_'ha venturi

tube. a n.zz]e, or an -rificP ha.,+been in,+erted,'an he ('alcul;,tedby observation .f 13ern.ul]i+._

equation. The assumpti.n,, ne(-e_sar)' are a steady, tully de_,eloped flow and no _en.,*ible
heal transfer.

T. begin the analy._is. ('-nsider the system _hown in figure T.]. Bernoulli'_ equation
applied between set'tion._ ] and 2 _ive_

y, V, y.,I<'_
P' + _ = P' -+- 2g,.
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llJ+ P!

wlti+'h, wh.n +ttlmlltttled into +¢lttal,_n +7.t11. l_ve.+

W)le'ft •

lip

l"rg_lnthe" rel_tti+,ll |'t_r .Jtt_i.+¢.l',lr,,|+l_ ;rrq,,'e.+._

/',+p +_p.+:

+I I',lll bl" 't}l+)_&ll ttl+ll

l,,t'_e _. _+ :-" P.I'.._ _T._

T.t_i

'_riling the e-quati+,n f+,r ma.++: fl,,w rat+- in IPrm..+ ,,|' ,'+,n+lili,,n._ at +¢'('li,)n +2 ,,f figure" 7, I.
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%.,I, lJl,ll ,'.|ll,lli,.l_ i" J.{| I, ,olnl,l_ lh,- h_dt.oldl, ,.qlllll_.,ll lli,_dllle,J j,t. the. lael..t _' ,. _Jlo.r_.

,'Ib

The" _,flue .,1 lr,, .h'l-'n,i, ._n Ihe pre_._ure r,ih,, r; lb,. ,Ii.ltnet_'r r:Jll.,/:J: _lll4t l h,- _|_t_'iJlq"

he;:l rali_, t'. I1 the sl_eeih_" he]( r.=tiq_ _ ('qm,_tant. I! i_ p,_ibl_- t_, pb,t a family ,)t (.urve._ t_,

rel.r_._en! )',, _,vPr th," prr_.*ure r_;tH)ranl_r l'r.m r= I l,, r---pre_._urr rati. al which _,,ni("

vela_'it_" _,-iir,_ at Ihe IJir_lll. .'_ll_'h a _ur_e i_ ,h,_n in hKure 7.;Z h,r k value.* t_t_een 1.0

and I.R. '_ lar=e-,*eale w,rkin¢ chart ,f |,, al._,, apImar_ iI_ chapter IH. I! i_ innp_rtant t_

n.ee at Ihi_ I_int tha! the. _ahl,, 1",. lt,._¢ di_,'u_ed. _lpplie_ ,,nJ_" t,_ tht" mea,;llr_'men! ,,|"

iwrfe('t I_a'_ u*ln_ either the- ve'nhari l_ohr ,,r lhe fl,,w _t,zzle. it d,_e,_ m,t apply I(, the thin-

!_l_te ,retire The value" ),,u,_e,| in the ,.q_atmn t_ cah'ulale fl.w thr_mgh a thin-pl:_te _,rih_'e

i_ Pmpiri,-all,,. det_.rmined and e_mn_! be f-und by the,_retical c.n.,ndrr_fli.n_,.

THE VENll.Illl TUI_

"l'be _enhzri tube ,'-n.4._t_ ,,fa ._h,,r_ c_,nve.r_in_ .,e¢ti-n f,,!l,_wed by a sh_,rt c-n,_tant-ar,:'a

-_e,.'ti,,u called _he tim,a! _.znd then a ,liver_ciu_ _ecri,,.. The purp_,_e _,t the _enturi tube i_

t_ ,.ct-lerdt- |ernp_raril?, the fluid in ,,r,h.r that m_'a.;urement .f the. change in _t;_=i*' pre.._ure.

c_.'u_ed b_ fhe vel,,cil_ chan_'. _ar_ be ,,h_amed t'r_-_.,ure .,ap_ are I.cated in the pipeline

.jU_,| ;lpMI'P,Ilit *'f t'h_" 4'_rlvt-r_itl_ ",e('ti_n _lrld :|! the ventenri tbr,,,'_ The _tuti,' pr_'-_ure i_

r_,>a-_urml at the _'w,, pre.-.ure lap.,, and the chan_e ,n pr,._ure i_ !_e;] in the appr_,prkfle

equali,,n t,,c;ih'ilJatP .the rate _,t" Huid fl,,w.

()he ,if" lhe n_tahle _'hara('teristi(-._ _,f lhe ,,en',uri h=be i_ its _mMl pressure h_ss. "l'his

i,_ a re._ult ,ff the" gradtnaJ are;l _.'hali_l" and the divenzin_ s_.cti,m whi('h aels to decelerate the

fluid with _i ,_rnall am.unt ,,f .urb,nh-n¢','. The rep_,rt .f the .._SME llesearth (;otnmittee _,n

Fluid Meter,., p,,ints out that the ,verail pre-_sure I,_ss Iht,_ugh the venturi tube will he appr, xi-

malelv 10 to 211 percent _,f the difference between the upstream stc_tic pres_re and the _'|m,al

stall," pressure. In ,,thee _,,rds. between 80 and 9t) percent ,_t' the venluri pressure di0"er-

ential is re,_l,_red m Ihe diverging e_ne. This e_mtnittee also points _txt that the percent

.f pressure h,s.; decreases as the speed _,f fl,w increases or as lhe size _f the venh_ri tube is

inerease.i. Figure 7.3 shows _ typical section -f a venturi tube and a pressure hish_ry

:hr,,ugh the entire section.

For incompressible fluids, equation _7.31 gives the the.retieal tare of flow thr_u_gh a

venturi tube. F_r e_,mpressible fluids, equatio._s t..ll) through t..ll.) are applicable. T,

obtain the actual rate ,ff flow. it is nece._sarv t_ introduce the dist'harge c'._eflieient C,_ where

actual weight rate .f fl,,w

the_,retical weight rate of flow
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l"ililrle 7._l. \_liluri Ill|)(,. ICourte._y '4f the 4r.(,r_ca#_.Koci,'t_ ,_( ile<'llorm'a/ E.girieers. I

i

The .t('iu_tl weight rat(' ,_f flow iilen is Iziven by

u.= Cl.4_' 2g, i . t7.15_

tbr an in(_lnpressible t:lili_t, aild

_,= C<)1<,,,4_L ] :Z:_--_ j 17.16i

for a ('ompressihle fluid.

The dischmge ('Oel0i"lt'it+lll (S,I sll_>uld be determined by direct calibration WhC?lle%'llar

possible. _hen it i>_ la,_i possible to delermin,_, C<t by direcl calibrati_,n, lhe use of curves

_)f ¢)<_versus l)ipe Reynolds number is suizi_esled. These curve.-; are (',_n._Irmqed from dala

tzalhered by/esiil_ a large _roull _f veniuri tuties of a spe('ifi(' desii_n, h ._h,lllld be re,ted

here thai any such curve will tie flit a parlieular wtriaiion **f the basic veniuri ltibe, ilild

the +alue ,)f (2<_ fi)tin:t with these curves +h,)tihl n()t t)e u+i'd wilh an,, type venturi tuh(. (,x(,elii

ih(" lype fi)r wili('h lhe chari was (,(irl.,.,Irti<,ted. ..II,'_%,|[ ('(tn+irut'ied +u;'h a I"lir_,t ), f(ir the

tters('hel v('niuri, whi('h is retirinied cts fit£1ilF(' 7,.i ctnd i_ ;.il._(i reprinie(t i(t a larger +('ale in

,.liat)ter ;21. +_tllh()tigh !}l(" ('tlrVi _. tiTtir(. 7.4. is Iiinit(,(t h) pip(' +izl-+ ;2 ili_.he+ II.I). )aild larger.

it ix f('a+ilile r() use the valil(+,_ (,titained fr(ilrl thi+ (+tirv( > ft)r pip( > .-i#.('_ ,_nlalh+r than ;2 inche_.,

14.2
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]Figure 7..I.. l)is('hat-#e c..('l)i,'i_q_t h)r v(,nl;uri tub(,>, iCourr<<) q/the ,|meri,'an .%)c&,t) tl lle,'h,mi('_d l:',)_i_)eers.j

espe('ially _in('e zu) definite trend in the di_('harge coefficient v.itb [)q;e size ha_ been identiii _(1

by the tesl_.

THE FLOW NOZZLE

.._. tl,,w m)zzle may })(' Je_.('ribe(I as a sh,)rt cylinder, one ,'n,l .f which i_ Hared t,) 1;rm

a Hang(, that ('an lie (.}amped })etv_een pipe flanb<e,< This flared end t',)rms a curved ell),'all('e

leading s)n<)othly i,m, a vylindri(.al .wcti(m <.all(-,). tile thr(,at. The tl,)w n,,zzle pert))rms

the same functi()n a_ the ('()nverging seed(in and the thr,)at (.)f th(" venturi tul)e: that is. it

accelerate_ the fluid s() that tile stati('-[)ressure different e can he measured and used It)

compute flow rate ill all aPl)r()l)riate e(l/lati()ll,

l{ecau._e ,if the absence ,if tiw di'.ergina s('('ti,m, the pr..'.-_ure I,)ss d_rm_)_h the n.zzl,, is

greater than lhr,)tlgb I},.(, _enturi It,b('. T|)e (,veraI( t_,leS_.t;r(" l,)... |',)r tt,)w )l()zz|(.._ rang.(.;

from ab()ut 30 t() g5 percent .f the inlet-to-thr()at pressure dr(tit as tile thr()at-t.-pit,e-diameter

raft() decreases fr,)m 0.8 t,) 0.2. as shown by figure 7.5.

"['he actual weight rate ,if tt,)w tlm)u)d_ a flow nozzle ('an be cah:ulated with e(luali(m

(7.15) f,)r an in(ompressible (tuid and with equation (7.16) for a (',)ml:)ressil)le fluid. The

c,)efft('ient C4 t() be used with the th)_ equations for a flow nozzle is different fr,)m that u:ed

with the venturi tube', ahh()ugh, as in the t'ase ,if the venluri tube. the value ,f C,t will vary

with the (t('_i_:n (,f tile fl(,v, u,)zzle.

Figure 7.6 _s a graphic rvpresentatim_ ,if the %SME long.radius fl()v, n()zzle which is the

t|m,, m)zzh" t',)r ¢,hi('h the ",.alue- ,if C,l li.,,ted in (.hapter 18 are alq)licaHe.

I .-1.3
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THE ORIFICE
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"['he .rifi('e in its sinlplest t',_,m i_, a dmL ft',tt 1fiate inh, v_hi(.h a ,mail ('ir(.ular hole has
been l},_red. .-_s in the f'asc ,_i' the _,',l_ri :ube and the fl0w nozzle, lhere ar," many fl,rrns

of the ori6ce. :kttention in this ha_dl,,,,.k, h,,wew, r. is ft,'used entirel,, (m the ,;.m('entri('.

thin.plate, square-ed_ecl orifice as _hov,-n in _iCure 7...

If man(mwters are _'.)nnected _',) a st-ties o]' simic.pr(-ssure hole.- made i_l tlw pipe on

b_tt_ sides of the ,*rifi('e. tiw_e mtmometers will ,h,_w the _,_riati,n in slati(' pressure al,,n¢

the pipe in the region of the orifi('c, The lower parl ,)f figure T.7 illustrates the average

static-pressure ,.._radicnt ii_ the vicinity of an ,,rifiee. (los(. to the inlet side ,f the .rifi¢'e.

the ,_|.a,i¢' pr¢._sn,, in _ pipe m('reases slighti_ ,ir:.h reaches it_ maximum value at the

entr;tnee 1',_lbe orifice. The pressure ,)f the fluid dr, ps al)rl]ptly as it flows thr, u]gh the orifi('e.

and _n the outlet side. the pressure c,mtinues t,_ dperease slightly. The minimmn value is

reavhc ! tit a sh.rt di,.' ,_:(.e from tht. outlet ,_ide of the orifi('e, lleyond this minimum p_i_t.

_}w 0r,'ssure irwrease ._tzain to a se(,,0,t maxim,m_ several pipe diameters bey,rail the ,¢ifi('e

|,_.:.de. ,'Kiri,'v n,, guidin_ ,,t' l}le stream ,wcllr_ ,,i_ either the inlel ,,r ti}e,_utiel side ,d' an

!%4
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orifice, the ac,:eleration and deceleration of the fluid stream, whi¢'h the pressure gradient

manifests, is accompanied by considerable turbulence and dissipation ,,f pressure energy,

especially on the outlet side. Consequently. for the same diameter _-atio. the downstream

maximum pressure is much lower fi,r an ,rifice than for a venturi tube, and only slightly

lower than for a flow nozzle. In other w,,rds, f,_r the same diameter ratio and measuring

differential pressure, the overall pressure loss through a square-c-dged _rifi,'e and a fl,_w

n,zzle are nearly the same, while that through a venturi tube is much less. Experiments

seem to indicate that, with liquids having low viscosity, such as water, and with gases .Baying

the pressure ratio, P.,/P_. not far from unity, the overall pressure !oss ratio Ithe diffelcnce

betwt-en the minimum pressure above the ori/ite and the maximum pressure beh_w the _rifice

expressed as a fraction of the droop tmm the upstream minimum to the do_nstream minimum)

is _ery nearly e-lual tt_ 1 -/32. This relatkm holds appr,x';mately true 6_r C¢value_ t_f up t_

ablaut 0.8;3 anti is illustrated i,_ ,i;.,ure 7.8. which is b_ sed on several _ot,'p., of tests. _ith

gases, the overall pressure loss ratio, in_'reases as the rate -f flow is increased, and the rate

of increase in the pressttr,_ loss ratio i:, augmented by inc_ eases in/3.

The weight rate of flow through an orifit'e can he ea/r.:_lated fr_m modified forms of

equatic:ns (7.151 and _7.16_ and are reprinted here for cc, nvenienee. Note the change from

Y, to the empirical factor I/_ fi_r orifices.

_7.15t

w= C,_Y,.4., 2g,.y p._, ) _ 2 _7.16t
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It is possible to rearrange terms in equations t7.13)and t7.16_ and thereb', obtain

nd

'v= K,.A.,[2g,.y(P -- P,t ]''

w= K_.A: Y, [2g_y, (P, - P_' )] ,z

_h¢t,r K,. is a flow coefficient defined as the product of the discha:ge eoeflicient and the

velocity of approach factor. I/V'I - _4

Ct-/
K_. _

V'I - B _

Equation iT. 17) then is to be used to calculate the J¢:3ss rate of flow of an incompressible

fluid titre,_h a sharp-edged orifice, and equation (7.] 8} is to br used with compressible fluids.

The determiaa, ian of .'he coefficients K,. and Y, to be ,,sed in equations (7.17) and (7.18)

involves a very lengthy di_c,ssitm, the details of which are beyond the purpose of this hand-

book. In general. K¢ and Y_ are fucetions of the Reynolds number, the shape of the orifice.

and the compressibility of the fluid. The shape of the orifice is given by 11 parameters:

this number, however, has been redu,'ed by standardization of many of _he orifice shape

variables. As a result of the above-mentioned standardization, it is _ssible to write for at,
incompressible fluid

and for the compressible fluid

K,.=f(R#. F. [3. D)

where F (gammal is the compressibility of the fluid.

The equations which relate the factors listed above are empirical in nature and are
based on the experimental values reported by the joint American Gas Assoeiation-AS_lE
Committee on Orifice C_efficients.

The value of Y1 to be used in equation (7.18_ for noncritical flow ha.-also been determined

by the ASME Research Committee on F'luid Meters. and for a complete discussion the

reader is referred to page 79. Fluid .l,t,e&,rs. The,r Theory ond Application. ASME. 195c).

The expansion factor _'_ fl_r coiner taps. I-D amt 1/z-D taps. and vena contracta taps i_
given by

Y, = 1 - (0.41 + t).35_4) -r'k

and for pipe taps

where
Y, = 1- [0.3336 1.145(/32+ 0.7/3._-, - ''.,:V* ,._ ,.

PI - P2 _ el;

PI C,

Plotted values of K, and Y, ('an be found in chapter IlR

147
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CRITICAL FLOW THROUGH ORIFICES

"l'h_-existence of a ma_timum possible P.ow rate of a ,:_)mpre.;,_ible ttuid through a n,zzle

was dis(ussed ill chapter 5. It _ts pointed out that for a gas having/_ = 1._. the maximum

flow occurs at a ratio of static to total pressure equal to approximately 0.53. _t was iur_her

,_hown tha_ in nozzle flow this pressure ratio _wcurs at the mininutm throat cross se_'tio,.
and that sonic flow c,,ditions exist at the nozzle thr,,at for this maximum flow condition.

It is an experimental fact that flow through a thin-plate orifice does not obey the ideal

flow law. as does flow through a nozzle. The most significant deviati,m being that flow rate_
thi_ugh an orifice continue to increase for pressure ratios below the critical. Flows at ratios

less than the critical are termed "q'ritical.'" or in some texts, "'supercritical'" flows. In this

region the characteristic equations for determining _uch factors as the flow coefficient Ke

and expansion factor Y, vary considerably from the equations predicting these same quantities
in the suberiticai region. This phenomenon of increasing flow rates is attributed to the

efltux from the orifice, unlike a nozzle, being unconfined. Th,s. the minimum area of the

flow stream, tl%e vena contracta, just downstream of the orifice is free to move axially, or to

experience area change. It can be shown that as the pressure ratio decreases in the critical

flow region, the vena contracta size approaches the orifice size. This change in vena con-

tracta area is reflected by changes in the discharge coefficient Ca. and consequently the
fluid flow rate.

The flow of a perfect gas through an orifice in a pipeline has been shown to be a function

of the flow area. the Reynolds number, diameter ratio, pipe diameter, specific heat ratio.

upstream and downstream pressures, and the absolute gas temperature. Hence.

u,= f (zt. Re. 13. D. k. P . P..,. T)

Restricting the discussion to high Reynolds numbers !when flow does not vary with the

Reynolds number variations) and further requiring small fl ratios, the mass flow rate of a _given
perfect gas can be sb,_wn t,, vary as a function of 4, k. P_, P_. and T. The relation between

the fluid flow rate and the quanta, ties mentioned above may be expressed

u, "V_-_
/¢,.,p_ =f (r) (7.19)

where r is the ratio P,./P,.

By test. it is possible to plot a curve of (w VT_)/(.4.,.P_) versus r for a particular _as.
"9Such a curve is shown for low-pressure air in figure ,.. This graph shows a plot of the theo-

retical flow of a gas through an ideal nozzle and a plot of lest data for flow through a sharp-

edged orifice.

To determine a relation between the flow coefficient K,-. the coeffic'ient of expansion Y,,

and the pressure rarity, the basic flow equation given by ASME is used where

w- 0.668AzK,.YI V_(Pt-P.,)

Since a perfect gas is being considered, combining P='vRT and the previous relation yields

u: N/ T_
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From equation !7.20) and fi_:ure 7.9. it is p°,_-_ibl,, to ph,t the pr, uhwt K,._, ,ts a fun,'tt,,|!

of r. Such a ph,t i,_ sb,.;v,n in figure 7.10 f-r air. Nolle'," lhal fl,r this _a._ tile l:r,,h|ct K,.Y,

is a linear fun_'tior, of r in both _he subcritical IBb and _upen'rilical t-|t r¢'gious, but lhe func-

tions have different slopes.

Now. by use of numerical methods, It is possible to determine an analyti_'al s°,luti, m

fi_r K,.Y, as a function of the pressure ratio r. As an example, .I. -X. Perry. 1_44.9. determined

the weight flow equation fi>r air as

w=O.668.4(O.410+ O.220r ) _f_AP _7.21)

It should be _finted out that equation (7.21) applies only to air at 1o,," pressure and

moderate temperatures with a negligible velocity of approach factor (/3 near zero).

0.4

i i I i

_0.3 ....... _- ....... _-- ................. -_- .... -4..... 4- .... -_ .......
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Orifice Flow i

..... _ .... -!- .... -t .....
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Figure 7.9. Flow comparis, m chart, lCvurtes_ qlthe ..fmertvan '¢¢cietv L!'.lfecb,mical Engine_'rs.]
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CHAPTER 8

ADIABATIC FRICTIONAL FLOW IN PIPES

f

GENERAL PIPE-FLOW CONSIDERATIONS

Iv general, the property changes that occur in a compressible fluid flowing steadily

through a constant-area pipeline are dependent on a variety of factors. The most important
factors are:

(1) Characteristics of the gaseous fluid

(2) Mach number of the flow (a generalized mass flow parameter)

(3) Fluid friction acting on the pipe wall
(4) Existence of shock waves

(5) Elevational change

(6) Presence of pipe fittings, valves, and other components

(7) Heat transfer through the pipe wall

This chapter includes only the evaluation of the effects of items (1), (2), (3), and (4).

The effects of changes in elevation are generally negligible in compressible flow as a result

of the low gas densities and will, therefore, be neglected here. When very high densities

and great elevational changes occur, the effect on static pressure can be approximated by

using an average density to compute the static-pressure change. This is then added alge-

braically to the other tosses.

The presence of pipe fittings, vMves, and other components is not specifically considered

in this chapter, since a complete discussion of the flow characteristics of components is

found in chapter 10. However, it is general practice to assign equivalent nondirnensional

lengths (L/D) of straight pipe to fittings and simple components. The equivalent-length

values are based on empirical data and are to be treated as extra pipe. This technique is

considered acceptable in compressible flow problems only if the pressure loss across the

component is a small percentage of the absolute pressure and if the gas velocities are rela-

tively low (corresponding to a math number of approximately 0.3 or less).

When heat is transferred between the fluid and the pipe wall, straightforward solutions

can be obtained for special cases. These nonadiabatic flows are the subject of chapter 9.

The characteristics of the fluid are usually represented by the perfect-gas law, the

knowledge of the specific heat ratio, and the molecular weight. This simple description

of a real gas is found to be satisfactory for conditions of high temperature and low pressure
(relative to the critical values for the particular gas). In this chapter, the analysis of the

pipe flow phenomenon will be based on the perfect-gas relationships. It should be noted,
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howe',rr, that in tile re,on ot I,+w t+.mperature antltor high pressure, the deviali_,n fr_nl the

perft'ct-+a-_ characteristiv., can be ver_; ...;ignitit+anl. |'he._e deviati,ms are discussed in detail

in <'h.K0t+'r,_ 2 and .1.. and rnetht,ds ,ff art'd_lnling l,_r them in pipe ft<+_- cah'Malion_ aro in.'h|d+.d

in chaptt'r I).

rrhe m.n_'h number J,, the general nlas.-; tt,_,,, rate parameter in pipe flow analyst,;. The

math n,md_er al,_o serves t,+ factor into lhc analysi,_ the tn,d+'cular weight d>t the gas and

the base levels ,dtemperature and pre..,,,ure.

_Lhen the effects +ff fluid friction on the pipe wall are et,nsidered in the analysis, lhe

frictional pipe-length parameter f(L/D) defines the frictional characteristics of the pipe.

The friction factor f depends on the turbulent nature of the fit+w, anti also ser'_es to faeb_r

into the analysis the effects of fluid viscosity and pipe inside-wall roughness. The friction

factor is basically a function of the Reynolds number. The common case of frictional flo_, +

m an adiabatic pipe is the primary subject of this chapter.

The compressible flow functions developed in this chapter d,+ not automatically account

for choked flow conditions or shock waves. However. the solutions identify the choked con-

ditions, and a discussion of choking and shock waves resulting from friction in constant-area

pipes is presented in ++Choking Because of Friction."

FEATURES OF AOIABATIC FRICTIONAL FLOW

The flow of compressible fluids through pil3es may be treated as adiabatic (the change in

stagnatit_n enthalpy is negli_ble! only when the pipe length is sh_rl and/or when insulation

has been employed to inhibit heat transfer. The analytical developments of this paragraph

are based on the fidlowing assumpti{ms, consistent with the introductory discussion in this

chapter.

!1) The flow is steady and subject to %scous friction in a constant-area pipe. tube. or duct.

i2) The characteristics of the fluid can he described by the perfect-gas laws.

_3_ The effects of ele,_ational change, if present, are negligible c,_mpared with fricti,mal

effe_"ts.

14i The pipe is strai Mtt and with.ut fittings and _'-mp-nents.

t5_ There is m_ appreciable heat exchange between the l-}uid and the pipe relative t,* th,

total heat _:apacily of the fl_wtng stream.

t6) There is n,_ external work d,me by the fluid.

The changes in fluid properties in adiabatic fricti,mal fl,w at c,mslant area are defined

fundamentally b_ the Fann. equati, m. C_,mbinati,m ,ff the first law total t.nergy equation.

with n,, e',_ternal work ,_r heat trausfer, and the continuity equati_)n f-r fl(_ at constant area

yields the Fanny, equali,,n in terms of enthalpy and density.

6 = ho - -- First law
2_,,,J

_'; = _-= 71 ..... _,mtinuity equati,m
I'

Gg.:-'

h = h,,- -%'1"--'.--'i Farm,, equ_ti,,n
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Figures 8.1 and 8.2 illustrate the _eneral shape _f I:anno lines on h-t' and h-s diagram,;

.,_l,I are helpfld in ilhlstratin_ the effect of wall friction on fluid properties. Figure 8.2 is

i__,ssible, since, f,,r a pure sub._ta:l_'e, entr,,py can be clef|tied bv the twq, pr, Haerties. h and v-
_'hen real-gas effects are ,_ignifil'ant. these pl,as _'an be made ,,n Ihe th rH_,_dvnami_" _-hart

for lhe parli_'ular gas.
It was sh,,ven in the paragraph on normal sh,,_'k._ in _.hapter 6 that point I. the point of

max,mum entropy, represent,; the point where the _v_ach number is unity. :_ls,_, it was sh,_wn

that the lower p,_rtioul of the curve el( t,, -t t repre_'_.nts fl,_w at supersonic veh,city, and the

upper portion _1;' Io -l) represents subsonic velocities. Furtherm,,re. it can be shown that

frictional efieets are. in general, necessary to pass from point to poix:t along the Fanno line

to satisfy the momentum equation.

The foregoing facts used in conjunction with the second law of thermodynamics lead to

the fi_llowing conclusions concerning adiabatic frictional flow through constant-area pipes.

Lines of Constont s

h
0

Large G

Figure 8.1. Fann,_ lin*',;_ h _ diagram.

f

Subsonic

Supersonic _lr'_

_'-_._/_ F::anno line for

_X a Give_ G

Figure 8.2, Fann,* line,_ ,,1_h-_ diagr:_n:.
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Flow initially supersonic. -- If point C _fig. 8.2) represents tile state .f the fluid as it enters

the pipe, there are two directiq_ns in which tile fluid properties may progress; that is, ir_mt C

to X or from C to ,4. The second law states that fi_r an adiabatic process, the change iv. erl-

tropy must be positive; hence, the process from C to X is impossible and the process fr_m C
to 4 occurs. For this shock-free process, the roach number diminishes from its initial super-

sonic value to unity at point A. There can be no further decrease in velocity vdthout violating

the second law. Hence, if the flow is initially supersonic, the effect of friction is t, cause a

velocity decrease and a corresponding pressure increase.

Flow initially subsonic.-As in the preceding paragraph, the entropy must increase for

the adiabatic process. Therefore. for flow initially subsonic, the process must be from

point B toward point ,4 on the Fanno line, rather than toward point 1_. In order to satisfy the
second law, the maximum velocity attainable with initial subsonic flow is sonic velocity'.

Thus, the effect of friction for subsonic flows is to increase velocity with a corresl_mding

decrease in pressure. The effects of friction on velocity, mach number, and pressure are,

therefore, seen to be opposite for subsonic and supersonic flows.

THE FANNIO-UNE EQUATIONS

In order to proceed with the discussion of adiabatic flow with constant area, it is neces-

sary to derive equations for the fluid properties "along the pipe and to determine the quantita-

tive effect of friction on these properties for supersonic and subsonic flow. The equations

are derived from the perfect-gas law relationships, the definition of mach number, and fiom

the laws of conservation of energy, mass, and momentum, The result is five simultaneous

differential equations that relate six differential variables. These include the fluid static

properties, fluid velocity, mach number, and the frictional pipe length. These equations are
then solved simultaneously and integrated to produce the desired direct relationships.

The changes in the flow conditions within the differential length ,f pipe, as shown on

figure 8.3, are evaluated as follows:

The equation of state for a perfect gas in logarithmic form ts

In P=- In 3_+ln R+ In T

t:
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whi{'h ran be wrilten ill differential f, wm as

dt' _ dy

P 3'

]'he definiti.n of math numbvr.

dT _8. I)
7'

-- z-2<a?

which in logarithmic differential f.rm is

From the total energy equation

(BI _ dV" dT

.1i'-' t 2 T

h. = h + _ = constant• gcJ

(8.2}

which in differential form, for a perfect gas, is

and dividing by cpT.

% dT+d =0

T 4- d( _'_ ) = 0

Substituting into this equati,,n the value ,d' T from the dcfiniti.n .f macb number

J2

7"_ ......

l.#,./¢ IF

and the value of % ,,btahled from the perfect-gas relati,mships. ,),--c,. = R/.] and /c :: c.,%.

yields

Fr-m the r-ntinuity equati,m

= 1} 8 }}

Since (, is constant.

, II"

(, = ._- -:- yt and

V dy-ydl .:=0 ,w

d(_,,t =dG

1.35



I

COMPRE.qSED G.4S ttd_DBOOK

qhm_bining this with the mathematical identity

yields

dl"-' ( 1 ) dleT:-'= 2r dr= T

dl/2 d3* 0 _8.4b

Now. consider the forces on the element of fluid in the pipe, where r is the wall shear

stress acting on the fluid and dA.. is the differential wetted surface area ,,f the pipe element.

Summing these fl)rces yields the cimnge in momentum of the flowing stream between the
ends of the pipe element

P.4-(P-c- dP).-I-r d4,,,=rb dV= (_)dE

and

-A dP-r cL4,,.= m dV

The coefficient of friction, defined as

and the hydraulic diameter, defined as

.1. (flow area) 1,.4

are substituted into the momentum equation to c.nvert the fricti,m term into re.re useful

terms, resuhing iJ_

Substituting ri't = pat from c,,ntinuity and dividing through by PA yiehls

a, (Ir.vt -'  t=i

The perfect-gas law can be written a.

so that

_, k k

P kg,.RT :"

pl "-'__ l:l '-' = /;..ll e
p (.2
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In!roducing this relation into the rnomenmrt_ equation yields

Substituting once again the mathematical identity

yields

l "2 •

y 7- D" 0 ,8.5,

Equations (8.1) through 18.5) comprise the five necessary simultaneous differential equa-

tions in the six differential variables: dP/P, d34y, dT/T. dMe/,U ", dV"/V"-, and 4f- tdL/D). It

is desirable to include in the analysis, at this point• the evaluation of changes in stagnation

pressure, impulse function, and entropy, which increase the problem to one of eight equations
and nine differential variables•

From equation _5.31) the isentropic stagnation pressure is defined as

Then

k

k

which, in differential form. is

dP._ dP '_

P,_ P + {+ k
2 /

d.I/"?
II" 18.6i

The definition of impulse function, fr, ml equation 15.401. is

F_= P tll + k.lF_

which, when written in logarithmic ,lifferential form for constant-area pipes, is

T_,=T + _'_!-_-k wl _ _8.7_

The final equation is written to obtain the enlropy change. Applying the first [am" to a

unit mass .f fluid moving through the pipe element

1,57
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For a perfect gas.

s_, that

P R
du ==c,. dT and T: r

Substituting the pe_ecl-gas law written in logarithmic differentia I form as

yields

dv dT
f- ==_--

P r T

And fiw a perfect gas. %-c,.=R/J. k=c_/c,., and R/J=c,[(k-l)/k].
clearing yield

,l_ dr ?--l_de
,,,-7=T- C-T-.i -k--

Slibstituiion and

_8.8)

By selecting 4tH_ff_ID) as ;he independenl variable, the remaining variables eao bc

defined explie:Aly in terms of M and t.f_tdL/D). This is aceomlrllished by lhe simultaneous

solution ,_t"the eight numbered equations 18.1 t through t8.8), resulting in lhe following:

,te z.lp[l+_I,-1),r'- t (m.1P - 2_-i-_-,,;_ j l.l;, 0 s _8.9_

dli2 l,'ll" 18.l(ll
-iF .... (i---i77-'_ _1,l/; t l) I

I 2 ( 1 -- .ll _ I

dT

T
____[ t__---1 t IS'-i dLL ; iJ _8.12_

d_T= [ ,_,i/2 ] i./7 (d/_)y 2(1 -l/'-'t " D- _8.131

liDII

_<_tL,..... I x-w'-' 1 _,ts._
F, ke( l-;-_-]tqJ it; t-D-I 18.151

158

_d ®



• !; _+"+_1_ "__+ ,+_._..,,+_ _ + ..

,11'

/

ilt. +

4I)IAB+4TIC FRIC7"IO_v'41, FLOW I+_ PIPES

C+'->')+--- ,+t_4f; _-
i+'p ,

i8.16+

Int++gration -f equations i8.9) thr, mgh _8.16_ will produt'e the expli,'it relati,m betwe,+n

the fluid properties, frictional length, math :;umber. veh..it+_, anti impulse f'uncti,m. But

first, it is advantage.us t. study the equations b_ the differenti._l f-rm h_ identify the. directi_m

of change of the various pr,_perties as the fluid pr,.,gress++s down the pipe f-r _,uhs,mic and

supersonic flow. 'Fable 8.1 summarizes these changes.

TABLE 8.1. -- Fluid Propert_ Changes

If If > 1 Isupersoni¢)-- If tl < 1 _subs,mic;-

dM < 0 _/ decreases d._/> 0 ff increases
dT > 0 T increases dT < 0 T decreases
dV < 0 V decreases dr' > 0 I" increases
d3' > 0 y increases d_ < 0 y decreases
dP > 0 P increases dP < 0 P decreases
dPo < 0 P,_ decreases | dPo < 0 Po decreases

dFi < 0 Fi decreases 1 dF. c 0 F, decreases&+> 6 s increases d._> 0 s increases

Eqm+fion {8.16;. and the second law requirement that ds be positive, establishes that the

coe_cient {+f friction must always be positive, it should be n.ticed that the quantities de-

fined by those equations which c.ntain the fact,w {1 --- IF'! experience opposite chan_es under

supersonic conditi,ns than when under subs,hie ¢-nditi-ns. This includes lhe math num-

ber itself, which is _een always t, tend t.ward unity. Therefore. f.r an+_ given tJpstreartl c,_l+-

dillon with suhs,,ni<, or supers, talc fl,t_, there is a maxinmnl d.wnslream pipe length./-max.

ass_,,"ate<u _ith that c,m,|iti,,'+_ s,.'h :hat the ma,'h number w,_t+kA,b+" unity at the end <_fthe

pipe. The theoretical results for slll3ersollit. _OWS art' ustlally subject t_+it++.'_l'eura,.> ,t_*mmin+
from the vis,',us behavi_,r ,_t" real fluids that cause the t'-rmati,m ,_f b,,,ndarv lav++rs and

sh,wk waves within the pipe. A m,,re CumlMete dis,ussi,n ++fthese effe_'ts c:m be t',,und it,
chapter 6.

WOItI<IIsI_ Rt:l._T|OIqS

T, arrive at w,rkin_ relati<ms, th,. ma_'h mtmlwr is spe<'ified as the in,le;,endent variable.

and equati, ms {8.9_ thr, ugb (8.I6) arc integrated. Equali,,n _8.|th is integrated directl+_ t,,
obtain the explicit relation bet++-'cn .1I and 4./_d./lJ_. Equati,m t8.10t ix also s,,tved t',w

4.f+tdL/D_ and ,_ubslituted int. each .f the ,,ther equali_,n_ s. that all parameters can be in-
tegrated ,,+ith respect to the <'-mm-n math number.

it is desirable first to convert the coefficient of fricti,n f-. since c,eflit'ient .f friction

data is usuallyf.undi_,terms,,t'.fratherlhanl_<such as the ),|m+dv diagram+, Thee,m+er-

sion between thes< +tw,, ,',wflieiems t'at+ b,' _,blained as fi,lh,,_ s. by definili,,n ,,f/'f,w a ,fifferen-
tim lenl-'qh ,ff pipe dL

AP_

)5 ' )
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I]._ ,l'..finili m

,_o that

7

L,,t ,tt

_ummin_ pr,,s_,ure- and shear f,,rce,_ ,m tl,e iJ_ct_mpre_sible fluid elemem yields

4 d/'_. = 7 dL,.

Note that d/-'/ --=-- dP. relati,,e to figure 8.3. From the definition of hydraulic diameter.

(t4,,, = _.4 dL/D. so that

dPt 4_"

dL D

Sub+tituting this int,) the expression for the ratio ()f friction factors above yields the following

direct con_ersi,m betweenf and £-

Substituting equation t8.17) int,) equation (8.101 and rearranging yields the f, Ah)wing

integrabte equati:,n for [(L/D) in terms of file inure comm,)n friction factor.f

d II"

The lower limits ()f inte_o'rati,_+, are seh-et(rd at a p()i)+' ah)ng the pipe where the ,,.ach

number is .14 and where 1,-=0 the zero refererlcv fl)r pipe-length measuremerlt. The upper

limit is selected as the point where the roach tmmb(+r is unit?, al)d the distance (:orresp<)nding

l_ ll = I is the maximum pipe length. Lma x. nwnri.r.,ed previ,usly. Integrating equation

(8. If)) and clearing _,iehis

J....  ,2k ] [" 2 --- u-' /
+_ 181

where] _is the mean frieti()n coefficient beiween 0 and Lm.... defined l)y

. t'dl.

"[))e fri,'ti,,n fact,)r is u_ually f,,und to vary only slightly over the length ()f the pipe.

The a_,-erage value ui]l always |)+. assumed, hereafter, and the bar ()ver the _yrnb,)! will be

.mitted f()r .;iml)li,.'ity. Th+' ,_ariali. '+ ._ht)uld I),,' ('hecked u._ing lh(" M,),.t_ (tiagran) ((.h. 3).
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Fliminafing lhe frk,thmal length parameter from the remaimng equations, u.,.i.g _-.'_!.athm

_8.10t and integra|ing res||lts in the |'Mlowing explici| relationships

P I f /r_l

P" ]},2 I x--)--I/:

_8i9i

J- / h'-_!
---= 11 I

_J2 _ 2 _

T c" k+ 1

T* r*_
t8.21)

y _V* 1 /2 1+ .tl-

7" V 1,1 _ k + 1
t8.22)

Po

p_

f k_l
i

, I.. [, . i,_- 1_ .... 11""
I '_[' "J
.ll_/ /,÷ l i8.231

F_ 1+ k IF
f,--]_= _8.24)f

,,-,]

.... In ---- (8.25)

\
Equations 18.18) lhrot|gh (8,25) are the Fan,.-line eqaations, r|'he superscript * den-tes

the pr, q'erties v.here the fl,,a is s,,ni(', at the end ,f a pipe having a length. Lma x. Tb,. usual

pr, btem is t, determine the vhange in fluid pr, q_er/ies in a sh.wkless fl,)w between tw. pipe

].cations. 1 and 2. separated by a frieti, mal distance.j4 L/D). whi¢'h is less thanf(L,_/Dt.

Note thal the choked fl,_w properties are estatdi_,.!v.'d ,_ifimut kn,:,wledge,dfll.m,_,,/D). Then.

f,_r a gr_en .tripe ._y,_ten; a,.i a spef'ilied flow ','onditi,)n. there can be only one _et of choked

flow v,mditions, and these superscripted (*l quantities are the same. regardless of what

upstream hwaii,m i- u_,ed t. establish |heJIl. (_o,lvt-rsely, tile specification of flow conditions

at any h_cafion ttxes conditi.ns thr,,u_l;,u: .'.he pi!w. "]'he additional relationship °,'."equation
t8.18! e,.labli,,hes the frictional .Iistance betw_'en the knm_n upstream p, drtt and the hu'ati,,n

of choking. Then. with reference t. figure 8.1.
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Likewise, since the choked values of the properties are the same, regar,.,es, of the upstream

point used to establish them, the entropy change from location I to 2 is found by

s2-s, (s--s_ (s-s*_
co _ _-_-t,,J2-- _/_ (8.27)

race the other properties are related to the cttoked _ _i_ze as a ratio, a ratio form of equation

is needed. The change in pressure, for example, betw¢ en locations 1 and 2 is found by

,"
t8.28)

All the other property changes are _-un,t by usin_ the form of equation tS.28L

Figure 8.5 is a graphic representation of the most important of the working equations,

evaluated for perfect gases having a value of k= 1.1.. More exact graphs for these and other

gases are presented in chapter 19. Solutions for the equati,ms can also be found tabulated

in Keenan and Kaye _1948L Ames 11953). and Pratt & Whitney Aircraft _19631.

It must be emphasized that the Fanno-line equations de_cribe only that fl,.'w in pipes

which can theoretically exist and _hat which is chockless. F:,r c,.ample, in subsonic flow.

fIL/D) cannot exceed.f(L,,,ax/D!. Iff(L/D) is computed to be I,_rger than the f_Lma,/D) ar',SO-

elated with the math number of the flow. either the math number is too large for the frictional

pipe length or the length is too large for the upstream roach number. In supersomc flow

with L < Lmax. pipe-exit back pressures equal to or _catt:r titan a swcifie pressure tPg) will

ca.use a normal shock to exist somewhere in the pipe. i'._:t Fanno equations describe flow

,nb -n either side of the shock, but n-t across it. P, is the pressure lust downstream .f a

n,_rmal shock that stands in the pipe exit with a shockle';s flow upstream. _'itl'D L >/-m_,x in
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supersonic flow. a nortna[ shock exists smnewhere it[ the pipe. and the Fanno equations appl_

onl) in the shoekless re_ons once again. A detailed description of this phenomenon is

presented in "'Choking Because _,f Friction."

the usual procedure for computing the change in gas properties between two l_m_tg in a

pipe with the graphic or tabulated soluti.n is as follov_s. Tbe math number is c,nnputed fi,r

the point in the pipe where the flow rate and fluid properties are km,wn. ._ convenient form is

/RT(u=.s

The point of known conditions may be either upstream _1)or downstream _2t. as shown m

figure 8.4. The frictional length parameterd'(L,_/Di, and the fluid property ratios of interest,

such as tP/P*h are read from the _aphs or tables at the computed roach number• The fric-

0.01
0.1 1

Mach Number, M

(Adiabatic Flow)

F_il_ure 8.5,. Craphic _,,duti,m ,_t' the imp,rtant F'ann,,-line equations f,,r _ = I. I.
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tional length/'_L/D) between the points I and 2 is computed from the pipe description and (rom-

bined with the value of Jtl.r_x/D) as read from the charts in ace_rdance _ith equation (8.26).

This (_omputation establishes the value of flL,,ax/Dl for the other point in tile pipe, which, ill

turn. ident_fies the associated math number and fluid property rati,s t'_r that I_cation by

means of the charts. The changes in properties between the two points are then evaluated

by means of equations _8.27_ and 18.28) and others _)f that form.

DIRECT GRAPHIC METHODS--SUBSONIC FLOW

The adiabatic frictional flow equations can be derived and integrated in the subs.nit

range between two specific locations in the piping system to produce solutions that can be

charted. These charts then provide direct methods fi*r calculating the compressible fluid

property changes between various locations in a piping system. For example, if the mass

flow rate and fluid properties are known at a point in the pipe. the mass flow parameter can

be computed. And if the piping system ts defined, the frictional length parameters/'(L/D)

can be computed for the piping between the two points. Entering the proptr chart with these

values, the fluid property changes that occur between the two [mints can be read directly.

These charts are graphic solutions of exact compressible flow equations which have the same

theoretical basis as the Fanno-line equations derived previously. The charts define the

changes in fluid properties that occur as a function of dimensionless parameters of mass

flow rate and frictional pipe length measured at (or betweent specific points it. the piping

system.
l,a solving practical problems, the kn_wn (reference) flow conditions will generally _,ccur

in ot_e _f three locations, relative to the location where the flow conditions are to be
est abli_,_.,ed.

L_;._e 1: Conditions are known at an upstream point in the pipe.

C_s_ 2: Conditions are known at a downstream point in the pipe.

(::_se 3: Conditions are known in an upstream reservoir.

The knowiedge of conditions in a downstream reserwfir is generally not useful in estab-

lishing pipe flow conditions since there is no necessary interdependence. If the pipe-exit

flow can be proven to be subsonic, then the pipe-exit pressure is that of the downstream

reservoir, lncwever, in such a ease. the pipe-exit temperature or specific w_lume must also

be estimated. This changes the probten, to one of known dq)wnstream conditions in the pipe.
as in case 2 al)ove.

The three l,_eati_ms where the flow c4_nditions are kn,,wn require three different sets of

charts to prevent the need for trial-and-error solutions. In developing the necessary equa-

tions, the location designations will f, llow that of figure 8.6.

Conditions Known in an Upstream Pipe Location

The basic pipe flow equations are developed for the section from ] to 2. based on known

flow conditions at 1. By assuming various flow conditions, the fluid property changes be-

tween 1 ar, d 2 can be coml_uted for selected values offlL/D! to pr<_duce the chart for case I.

As discussed previously, h_r any assumed fl_w condition and piping system, tile properties

of the tlnid are fixed throughout the pipe and the upstream reservoir, if ,me should exist.

regardless of the location _f the known fl_w conditions. Theref,_re, the data required to

pr,_duce the charts for cases 2 and 3 are 4_btained by m_difying the flt,w parameters and fluid
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property changes to reflect the change in the reference location from 1 to 2 and to 0, respec-

tively. The pipe is assumed to be connected h, the upstream reservoir with a frictionless

isenlr,,pic nozzle to simplify tim analvsis. The significance of the frictionless nozzle is that

isentropic flo_' can be assumed to relate the conditions between locations 0 and 1. The use

of the nozzle also permits lh, ase of the charts of case 3 to relate downstream eonditi.ns with

stagnation conditions at lo_,,ion 1. In a practical pr.blem, a square-edge,.t entrance would

be accommodated by increasing the effective pipe-length parameter f_ L/D _.

Proceeding with the analysis of case 1. the equation of state which des_'ribes the stare of

the fluid as it progresses through the pipe'is established by noting that the t,_tal specific

enthalpy ,,f the fluid is constant if the fl,:,w is adiabatic. Then

18._())

For a perfect gas, il has been estabhshed previously wh. 2) thai

R
du = c,. dT c, -- c,. = T

J

and

dd'r)= R dT k =_'
C t •

These equations can be combined tc obtain

J du=-_

Substituting this into equation (8.30p yie!d._

k-1

::J25 t:'_4 () 69 I'2

¢8.31)
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which can be rearran,_,ed as

From _'4 _IiI ili tli|)

an(] for a constant-area pipe

re= yl,4 _I', = _'._,,1:I'_

V, "yj !'_

_,iso. by definition of the math numbtr for the upstream location

_'_ = ,$I_c-' = $1_kg,.P, t,,

Snbslitulin_z these inlo lhe equation _I _.lale yiehl_ lhe equali_m_; relaling lhe fluid pr_perly
changes to the upstream math number.

_]s_. since

,,, .,, [ 1 _8.33)

8.31-

.%n additi_mal t'quali,,u is needed l,, relate these ttuid pr,,perl_ chan_e_, t_ the fricti,nal

lenglh ,f lhe pipe. Fr,,m an inlermediale .-laSt' in the deri_ati,,n ,,f equali,,n _8.,5_. the ;,dh,_-

in_ equati_n can be _ritten

71 ..2,]1 "_l:-'_ d],-TZF-.... d/' _.r(2_,/ 7) =_ _:_:'_

.%n alternate i.rm _d this equali,m i-, the Bern,mlli the_rem. ,,blained b_ substi_ulin_
dl 2=21. dl"

,. 1"2

B_ sub_.tilmin_ the mathemati,,al identil_
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all(] the vahle ,d" d(Yt) from equation 18.31+. ,_quati,,n t8.;_;61 t'an be rewritten as

,tl +t,+e,. d: !' _/\

-i_ - T_- ! t',l -,- +t :+i_}dl, :+_0

Further sub-_tituti,_n q_f tile salne _i t>_' t'nbm ,'qti+{ti,,n tg.:*,2_ yiehts

......... . ,,Si-_j -+-_,2D ]

For stead)" flow in a constant-area pipe. _',,ntinuity require_ that

tl J"

G = _ --- ;7-- c,,n_;tant

which can be written once again in logarithmic differential fi_rm as

dt" dr

Substituting lhi_ and clearing yield tile folh_winz inte_,_.xable eqtlation

f'i:,t =+,.' '"+++tit" l _ • _., all, k)t'fL

_+rryiw_e, ,,opt tip+' inl+'gration and _,ubstitutin_ the definiti,_ns +if sonit" velocity and math

numb++r viehl the equati,m that relates the frit'tional len_lh ,¢t L_.,r)!. measured bet,_ee_a the

tw4_ pipe Io_.ations. tq+the fluid pr_q+erties and mat'h ntm_ber

,'(2I.... '++-++', , 7Ci_ j,. _ . ,,+

Equations 18.33) and 18.37) <+an be s<dved sirtmJtaneously t+, I_)r<+dtlt.'e the charts f,,r

case 1. which consist <_f separate charts fl_r each value ,_f k that is to be represented. Fi+ure

8.7 represents the chart fi_r k= 1.1- and case 1. Note that the mass fluw parameter <b: has

beeo +'hosen as

Comparing equati++ns 18.38) and t8.29+ shows that d is merely a modified math ntlmber, made

independent of k!&= I\'_.ll_]. ]'his se)ecti_,n is made to provide easier interpolation

between charts for uneven values ,d" k. F,r example, fi_r any value of k, tb_ needs to be

calculated only once. and the charts drawn t'_r all specific values -f k can be entered using

tl,e same value of 0b,. l: can be shown by cr,_ss-plotling the data versus k that linear inter-

polation between the +,harts fi_r any in-between values ofk yiehts zoned accuracy
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Dircrt pipe fl,,w ..lution._ qr,md_liov;_, kn,,_,,n

in ,lVt upstream pipe l¢);'alloll).

Although equation !8.3,1.) can be used to rompute the lemperalure change (T_/T,} fi_r

each assumed flow eonditi,)n used in r,.mputing points on the chart, iv must be modified t.

pr_,du('e the parametrir turves for sele('t."d even values of ITe/'F_ ). This m.difieation requires

substitution -f Iv.../t'l)= ( T..,/T, ) (f'=,/P_) ' into eqt, ation _8.34). resulting in

1 _8.39_

Ee,Jations _8.38) and _8.391 establish the variation .t' _P_Y_ ) ',ersus _b_ al.n_ lines .f (',m_tant

(T:/T_). That this equati,,n is indeterminant f,r k = 1.0 is insignificant, sinre for k= 1.0.

the temperature is (',,nstant -ver the entire ('hart. and no lines of (onstan! _T_/T_) exist.

The eritiral flow r,mditi,,ns are plotted on the rhart to identify the limiting (maximum)

subsonir flow. which orrurs w|:en the veh_rity at the pipe exit heroines s,mic. The sonir

fl_w line is desrribed by the previousl, derived pquation (8.19). which ran be rewritten as

k---1)

Pt
_8.40)

Conditions Kn,,wn in a Downstream Pipe Location

The chav'ts for rase 2 van he pJ_,tted fn,m th(, eah'ulated data -f rasc 1 simply by definin_

tht. fl,v, parameter for the d,wnstream pipe lorati.n
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ill. Ill

'l'ht" i',,rlvt-r._i,lil rchiihi_ _51 :alld _.: is ,,brained llv c,,luilhlili7 ,'ql.ialh,n-; tlt.'}Pli <ililt !I'I. :l.i l

, ,s.> \' E
iB..12_

The !P_,IP,) data cornpuled 6>r itie fl,,_ c,,ndiii,,ns used in e_iablishing the charis fi_r case l

can now be ph,lird versus _. using equalion 18.i2). pr,,lucin_ llie cilaris f,_r ease 2. The

case 2 eharl for It-= 1.4 is sho_n in fi_ure 8.8. The lines of consiant IT._,IT,_ are derived by

substiiuling into equalion t8.341 the relationship

from the perfect-gas law. and

r: T.> P., -,l

.,\P,I

il 7:= if_;

¢,l)tained fr,,m ('_nl|_inath_li ¢,f equati,_ns f8.38L (8..11 t. ttnd i8.12), l]learin¢ an¢i s-l,_iiig f-r

Iv'

P2

P
t

10

.... 98

0 .2 .4 .6 8 1.0 1.2

Figure, 8.8. liil_-.'l pil.' l:h,,., s,,luih,_ls h',,ii,lilh,ii- kli,,wi_ in
d ti_.n_lrt',.llll lllll( " I(,<',tti_,tl).
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tP:/P_) vhqd )tie neve_,._ar_ relatmnshil) t. define the linos ,A' (imstaut (T:/7'z) ,m tile vhar)_ ,,t"

' _/" ] I -'•
The sonic" flow line ),('curs as a vertical line on the charts ,)f ('as(. 2. _,in('e the ,h,)k,.d

c',m+.iiti,)n ct'tir_, at the pipe exit, where the llt)Wr parameter r3.2 is ti)mputr'(l. ,_vlil _ivlte )['2

is unity, the s()ni(' flow line is desvril.)ed using equati()n fS...1,l( a._

6-2 = \/_ (8.44)

Conditions Known in on Ulamtreom Ittt.,ervoir

To extend the analysis to case 3. which accounts for a reservoir ahead of the pipe. it has

been h)und convel:ient t,, assume a frictionless nozzle at the pipe inlet. This permits the

use ,ff the isentropic flow relationships to define the changes in properties between the up-

stream reservoir location 0 and the pipe inlet I. Therefl)re. these charts are also applicable

for computation between two pipe Ioeati, ms. when the upstream stagnation properties in the

pipe are kn.wn. The pipe inlet corresponds with the nozzle throat. Then. for this seeti.n.

the pressure and temperature latk)s avr()ss the n.zzlc are .btaiped direcdy from equation

(8.381 and the ptevi,msly derived isentr,..,ic relati,)nships (,f equations ¢5.31) and (5.10)

/,"

+'[lO

_=
(8.¢))

7',I /,1 Ii r....+ +l, ,+u,)

B+ u_ing (+(luati())is (8. I+5! and ,8. 1.6) and the data (',)reputed previ()t+.+ly l,)r the ,.hari+ <,f <.as(, I.

the pre...sure and i('ml)erature ('hange data required l,)r the ('harts, f,-ise 3 van be ('omputed.

This i_ l,<)._sihle since for a _i_,en fl<l,,,+ ¢'<mditi(,n aiid iiipi_tg ¢_,steln

ttfl(l

q:-',- #" (!"i ,sv;_

':l',, q8..181

The fh)w l)aratncier f()r <'as(. ;:_is define(l as

+")f/)<s""---i 7,_'_ (8._9)

and dl,) is eitui,_.alent t<) $_ all(] _2. ex('('l)i that n,) real nla('h nutnher van he ass+miatvd wittl

17fl
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the _lagnalion v_mdili{_ns o| ti,e upslream veserw_ir.

equatimls i8/_8_ and i8..1_91

ie,\
ly,,

6o is related t,, ,,b_. b_ c,ml|fimng

\'!'

Sin(.e ihe pro('es:; between the re,_erwm at_d throa! is isentl, pie.

and equation i8.501 can be simplified to

¢b,,= d_, \po/ _8.51_

Eqaations t8.:_5) through (8.5l}, when combined with the data computed f.r t-ase 1, can be

used to compute the data for the ,'harts of ease 3. Figure 8.0 is the case 3 ,'hart plotted

for k = 1.4.

Po

1.0

8

6

4

.2

Figure 8.q.

\N"

2_ .-

I

",il

/'' 4 > /' i '' I

-- .-J- I
•2 .4 .6 .8 1.0

c'_0

l}irecl pipe tt,,v, -;_,hiti,m_ icondili,,Ip, km,,c.n in

:.i1! II_._alre;tlll "t'_¢'r_,:,ir_

Note that in the ease of an upstream reservoir, the charl includes a curve h rJ_L/l)t=O.

This curw" c,wresp_mds with Ihe isentropic fl,,w from the upstream reser,,oir t,, the. throat

of a snl,mth p.,_zzh-, uhirh is als,_ the upsire.Jm pipe Io¢'ali_n i_i this case. The .lTLi'lJl = 0

] 7']
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cur_es are readii_ -btained from the ise||tropic tI,Jv, ft, n('ti-ns ,,t' chaplet 5. 1"he adiabatic

fl.w parameter of equation 15.?,6_ i,, recognized a.- 0./\'k and was obtained by referring the

toca[ ma,'|; qumber, detine(t by equali(m q5.22i or t8.29), t,) the stagnation r.nditi,ms. "['hen.

t-r the nozzle-throat lo('ati.n

'PI '

/ T!

\'T,,

S'ubstituting the isentropic flmv r_dationship of equation (5.28) to eliminate the temperature

and equation (5.31) to eliminate 1,1t yiehts the explicit formula 6,, in terms .f pressure ratio

/zk " _8,52_

The lines of constant (7'._,/1",,) are obtained by substituting into equation _8.34) the relationships

(T._,/T_i from equation (8.48k IT/T,,) from equation 18.'461. and l i_ fr.m equation tS.50L The

resuhing e,Inati_m solved for (P._,/Po) is

k--I

& _ " -'U#-

_,1 7".
_8.53)

The h,rm ,,f eql,ati_m t8.53) indicates a straight-line relationship between (P e/P.) and d_,_t-r

(,onslatlt ,,ah|es of tT.,IT,,).

The ._m;c flow line can be derived by substituting into equation q8.19) the relationsbips

P* / P _ - _;'*,! P, oI( P d P. )

,t[_ fr.m equalion {8..ql ). and _P_t'P,t from equati-n (8..-,tSk resulting in

f

-- =: ' " (8.5-;)
t',, (t'" _ k(k+ l )

An alternate method f,,r obtaining, equati(m (8.54) is t- substitute the rritical teml)erature

ratio from equati,m iS. l_t_

T* 2

T,, k+ 1
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into equation i8.53_. This relationship can he u_ed fl_r case 3 because the upstream tem-

perature is the stagnation temperature, and because ti_e equation has been shown ill chapter

5 to apply t,_ an.', adiabatic flow. re aard]ess ,,f irreversibiiities, it is also p,:_ssible t_, ,@ain

the relationship of equation i5.1,1-'_ independently by equating equations _8.53i and i8.34t

levaluate(l f,,r the choked eondithm where T_ = T* and P._,= P *).

Expanded working charts for cases 1. 2. and 3. pl,_tted for values -f L---- l.t). 1.1. 1.67.

1.8. 2.5. and 4.0. are pl;_ced in chapter 19. Values ,f/, > 1.6, are il,cluded t,_ at.c,)tlrlt f,;r

real-gas effects, in which case k represents k_. the isenm_pic expqment discussed in chapter

1-. rather than the specific heat ratio. These charts arc plotted ,m logarithmic scales to

imprq:_e readability in ',hp ranges commonly encc, untel ed in prcactice.

CHOKING AS A RESULT OF FRICTION

It has been determined that for a gi'ven upstream math number and specific heat ratio.

there exists a maximum frictional length, f(Lrnax/D), as defined by equation 48.18). which

causes sonic velocity at the pipe exit. Further. it has been shown that there can be no

transition within the pipe from supersonic to subsonic velocity in the absence of shocks.

and there can be !,o transition from the su_ sonic to supersonic velocity within the constant-

area pipe. The question often arises, when dealing with subsonic flow. as t_ the effect of

an increase in pipe length to a value greater than Lmax for the particular upstream flow

condition. Ft_r flow initially subsonic, such an increase in pipe len_h will reduce the math

number and. hence, reduce the mass flow. The reduced upstream math number will have

a value that corresponds to the increased value of f(L,nax/D). Choking in subsonic flo-.¥
can also be produced by reducing the back pressure at the exit _f a fixed pipe. thereby

increasing the flow rate t,) achieve choked thaw conditi_ns.

Supersonic flow in pipes is genezally produced by an upstream con',erging-diverging

nozzle operating with sufficiently low back oressure. An imp,_rtant difference is that in

the supers,,nic case. :he flow rate (w/4 ) is constant, as eontr,>lled by the upstream conditions

and the size of the c'h,_ked c,mw, r_ng-diverg.ing n_zzle upstream. The fl,bw c,_nd_li-ns are

defined by a single F'ann_ hne. as l.ng as the back pressure is maintained l,,v_ en,mgh t,_

choke the nozzle. Therefore. the. c,m¢'ept _t" eh_king is slightly, different in supers.ni,.'

fh_w and is ass.elated witt_ the formati_m of normal sh.ck wave_, within the pipe. rather

than a limit -n flow rate and/.r pip- length. Sh_)ck waves can be caused hv excessive back

pressure ,_r excessive pipe lengths. _r both. _n in_p,rtant similarity t. subs-_fic fl-w is the

existence _f a maximt|nn pilate hmgth at which the tlow will bee.me sonic _11 = 1_ at the exit
wit h shockless flow.

The choking phen,_men,m can be analyzed in detail m,_st c_,nveniently by studying tile

changes that occur when the back pressure at the pipe exit is varied. T_ facilitate the

analysis, it is necessary to divide the discussion inh_ tw,_ parts: Ill subsonic, su_'h as f,;r

pipes fed by conver_ng nozzles: and t21 supersonic, such as for pipes fed hy convergin.z.
diverging m_zzles.

Subsonic Flow

F'l_w in a pipe fcd by a reservoir and a c.nverging n-zzle must t_e subs_mic, with static

pressure decreasing with pipe length. Consider tt_e fl,,w through the pipe.f the system

sh_wn in figure 8.10. .t.ssume tLe back pressure Pr, t. he variat_le beginning with an initial

173



P_

P

Y
.,....

E_ Pe_ P_

. .. E_,E+ \\ \\
P Pb_ P3 P- p P2*

L L_ox 3
L*mox 4

df
L

Fi=:11P R. IO. t.h,_kin/- b*-r_-" ''_"(ri_'li,.*_ v,ith ..t/,-,,m_" :,qtiabati, |tiP*" fl,,l*.

!Tl



b

f
f-

_I)I4B.4TI(; FRICTIO._,..tL FLOil' 1'¢ PIPES

vaiue _)f t',, the sa_w as the supply [)r¢'ssure. and de('rea_ing through lit,- wh,)le range ()f

prvs,_ures it) es,;entially zero prt_ssure.

it),, > '/_01 > _t_7 (('urvv I. _. 8. [0)

_'t:leD the back pressure is le_s than P_). there is a certain mass fh)'_- through the t'ipe and

a certain value ,if ,t] at :he pipe t'ntrazlt't'. For this siluatitm, the fl()_ velocity ilxvrt)ases

thr,)ugh th(-" pipe. bill the flow is _')itire]_ subsonic art(| P,,) -=-Pro.

P(_ > t)v,. -'> it).? but l't,., < Pot (curve 2. fi_. 8. I0)

Qualitat_vel_ curve :2 is the same as t-tlr_e i. The only difleren('e t_, be ()b_erved is an

increase in mass flow. mae}) number, and _elo('ity and a det'rease in L_,,,,x.

Pb.) = P:'_ _et)rve 3. fig. 8.10)

_hen the back pressure is decreased .o P:_. which is the value of the back pressure

that causes sonic velocity at the pipe exit. the pipe is sa;d to be choked. The exit math

number is unit_,', the inlet math number is maximum, and P,:_ = P0:)= P:_'.

Pt,4 < P*=P4* (curve 4. fig. 8.10)

Dropping the back pressure below P_ has n() effect on the flow ar, ywhere in the pipe.

For this condition. P_4 = P,.:) = P,_'. Also. P_,_ < P_ and the drop in pressure from P_ t() Pt,

takes place bv expansion outside the pipe in the fi)rm (,f oblique expansion waves.

It sl)()uld be noted )hat tbe ('hoked pressures. P*. art. different for ('ur-Jes having dif-

ferent mass flow per unit area. since the Fanno cur'_e_ are different.

Supersonic Flow

Fh)w in a pipe fed by a re,_erv(,ir and a c,,nver_ng-diver_ng nozzle will produce _uper-

s, niv pipe fl.w if Ihv back pressure is maintainvd sufliviently low. For this vase. as sh,_wn in

figure 8.! [. it is ne('essary to c()nsider two classes t)f flow; namely, t|()w in a pipe having a

lesser le_),.ih than L._ax and flow in a pipe with 1, greater than Lm,_.

It sh()uld be n<)t¢<! thal the ll¢)_, p(-r unit area _+!}i ali the supers+)ni(' flow ('asps t<) t<,ll,)w

is a v,)nstant, as fixed t)y the oh()ke(t eo_3diti(+n ()f the' upstream t',)u_er,ging-di_,erging n,,zzle.

The)efi,re. ,'(mtt'ar_ to tlt(" subs_,ni(" bel)avi,)r, there ¢'an l-re only a single Farm, ('ur;¢' at)(] a

P P

T o

__...J/

0 0

Pb

o

Figure 8.11. ( hoking bet'au.;e ()f fritli,,n _'ith supersonic adiabati,.- pipe tl,)v,.
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_in_le choked fl_iw pressure P*. rt-_ardless ,if the back prt'ssure, s,i h_l/;_ a_, >up+ors,liiic

tilt't'i iS illailllailled Lind ltlt. upstrt'am sialZll<ttiliti _',inlJitiml_ art > 1113t'hilll_ett.

This implies thal the. pressure in the pipe +'xit ++i:li _il++_.kles>, tt.++ ,h'_i_l/ated a+ P,:

Hlusl tlt+ h,+s tilan the _'ti.ked lt.w pre++iir+" P:+. identified b+ '+lie I"itilll_,-line t'_iui, ili_pll_,.

(:,+,si_:l.i: Pp,< P+'.

_'ile>l the back pressure is le._s itian the >;}l,_.kle,_s exit pressure, tile pr, cess _i!! fo!i,_w

tile Sllper_.llrlie part of the Pannl> line until lilt' exit [iressilre fi t, ---- P,]. as .;ii_l_n i,q tigure 8.12.

Expansion frttill P,, to lilt, will occur ,_utside Itle pipe _ith oblique t.xpan_-:illn _.a,_'es. There

can be lllb. shttek, since lilis _,>uld cause tile process i,i jump ill the subsoili{' part of the

l"ann,_ cur_e, and ilien with subs,,nie fl-w. the exit pres._ure wllilld have t,_ lilal<'!; the back

pressure. T- reach that back pressure, as sppcified t,, be I,_-_. thall ]_,'>frllm the subs,,nie

part ,,f the Fanno curve, w-uld reqnir- :_ pi,,t:ess ltJ' decreasin_ entropy al,u_g the Fanno

line. This violates the _econd law oftherm.dynamies and _ill not occur.

p
Pe_

...b_P*
#

/

1 E_Pe Pe'

L ['max $

Figure 8.12. 4];tse 1.1. t_h'li.nal ch-kim_ _iih _iitt_'l'_,,nic i.l,_',,, v_t_.li [. ,; l,m:_ alid I'_,:: 1'<.

{;.4st: 1.2: i>_ > I>_ > tJ[,

If tile back pre._sure is il_creased fr,!m that ,_|' i.as,. 1.1 t_ smni'lhiil_ siil_tltiy greater than

it>,',, tttt" llhillllle expallsilin _ave._ tliiisilie tile pipe exit are ret)lat't'lt b) _,tlliqlw sli,,cks whh'h

ser-'e to raise the 10ressllre tit" tilt" supersoliic illlw t_t the back pres._ure. ()ther_:ise. ¢'ase

1.2 is identical with case 1.1 in lllai F,. = P[ and no sll.ck wa-_e o¢'¢'ur_ ,_ithin tite pipe. There

is a limit, h,t_.ever, as It, tl_l'_ tli_ll P_, can be raised _iliii_ul eausinlz lile external oblique

,;h_l¢'ks l_l retract t,> lhe pipe e.xii and [l>rnl a nlJrnlal sll,_Ck, as shown as a heavy d,,lied line
,ill t]_Zllre 8.]3. This liltliling back pressure is designated l_r_ and idenlifies tile ttlresh,tld ,,f

back pressures lhai pause inierlia} shocks. Tilell Pr_ is liie pressure thai _ill _/'('llr d,w_il-

.qrt.am ,if a n_rnlal sll_,¢'k standirl,_ in tile pipe exit and vehiif41f,upstream sll,,ck {'lli/tliti,iD i._

/tlai iesllliiri 7 froth .;h_wkless supers_iiic flow in tile pipe up l_t tile exil. ]'tie pressure just

UliStrealn ill the ntlrma] sht,t'k _mlht be P,{.
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Exit _.._..___Shock \I

for j K)---_ p-

Pb Pg I /I-

E Jo_>'_l-" Pb, Pe Pe'

",hock I_ "_ Pb

Pe Pe,

L L s
mGX

l_'igllre 8.13. ( '._r.-e1.2. (ricti.n.d _. _.kin= v,itb. -qH-'r'.-,mh" t|,,,.,, '.'.}.'I: /. - /
,rod t',j > 15,> I"[..

CAs_. 1.3: P_,> t',_

_'hen the back pressure is incre,_s_-d t. a v_lue equal to P,i. as described in case 2. a

normal shock stands in the pir'e exit. Further im.reases in P;, will cause the normal sh.ck

to move upstream :-flo lhe pipe. re.uhi lg in suhs.oie fl.w between the sh,wk and the exit.

The exit pressure .f the _ub_,_nic fl-w _il] adjust t. tile 13a_,k pre._sure s. that /_,, = t'1,. as

shown in figure 8.1-1.. Progressive increase,, in back pressure _,ill simpl,, IrtOte tile sh.ck

farther upstream in the pipe and subsequently int- tile n,_zzle, until subs_mic fl, pw exists

througb.ut the system.

Pe Pb

_M 1 E pe Pb

'_/_ PQ

t/
/ /_c_--%

E

\

_, \ Pg

", \
x \
\

Pe'

kmaxL L s

Fi_:.r_" 8.14. (ia.;,. t.3. t'ricTi.,nal ch.,kin_z v. itt_ '._H,er'_,,ni, fh_w wht.n /. -_ [.._.,. all.| ['_, ::" /',,.

(:L,XSS2: L > / ..... ,,

_,'hen the flo_ p.ssibilities .dL </.m._ '_ere c.nsidered, the sImvkless fl.v, exi! pre,.sur,'

t','. _as f,.md I- he actt|allv attainable fi,r some _alues ,,f back pressure. '_hen L _ l.m:,_.

the exis|ence .f P[,. as defined, is imp,,s.,.ible. ,_inc¢- this w.uld require the existence ,_t' a

fl' _r t:,r_wess be_-nd tile s(mi¢' l_,_inl -n the supt'r,_.nie pressure cur_,e, as sh.v_n .n the pres-
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sure diagtam of figure 8.15. i! .has aiready been established that the flow process eann_,l

progre.,.s bey_nd the sonic p,,int in a ccmstanl area pipe with,_ut vbdatil_g th__ _econd law of

therw._dynamic._. This +i,_lation is reflected by the pr<+cess of reducing etltropy that x,,+nld

be required to pro_'ess around the knee ,,f the Farm. curve <d' figure 8.15 frmn t"* t_, any ,+ther

greater pressure. Therefore. P,_ is nor_existent when L > /.,nax. which further implies that
there is no ._hoekle_+ path to points beyond Lm_ _ ill _upers+_nic fl_,w.

----_ M 1

",E

t P°'

/!
,,,J

Pe Pb

I
P*

2""
L mox L s

Figure 8.1._. ('a_.e2.1, t'rictloua/choking ;_,ithsupersonic flow when L ">/'_ax and P,.,> P*.

Pb

CASE 2.1 : P_ > P*

In view ,,f the abnve discussion, the existence of a shock wave in the pipe upstream

)f Lmax is apparent fi_r any back pressure that allows supers,mic fl_.,w at tilt. pipe inlet. The

flow pr,cess is described by figure 8.15 for the case where P_, • P*. and the exit pressure
adjusls to the ba,'k pressure, as in all subs,nit flow. The l_wali_u ,,f the shock _ave in tile

pipe is established by the ba('k pressure and the required matching, " fluid pr_q_erty changes

in the supersonic and _ubs_ttti(' re_,,ns with the changes ue<'urring acr,ss the shock. Increas-

ing the bm'k pressure re,yes lhe sh,_ck upstream, as in case 1.3. until the fl,,w is subsonic

in the entire pipe. ?tls_. as long as P_, ;> P*. the subsonic fl,_w ira the down_.tream re_,i_m
will remain unchr, ked at the exit.

C_SE 2.2: P_, < P*

_hen the back pressure is reduced to P* with L > I.,rax. the shock wave move _ to its

farthest possible downstream location and the subsonic flow becomes choked at the exit.

Any further decreases in back pressure will be ineffective in changing the fl_w ¢,mditi_ms

artywhere in the pipe. Then P,. = P*. and the expansk;n fr,ma P_ to Pt, will occur ,me," again

as oblique expansion waves _,utside the end of the pipe, as i._dieated in figure 8.16.

in closing, it sh,_uld be mentioned that the foregoing analysis was ,de_el,,pcd from the

idealized theory of shock waves as plane discontinuities. It must he remembered in practice

that the _'hange frt_m supersonic to subs_mie flow is likel_ t_ exlend over a e,msiderable

distance within the pipe as a result -f boundary-layer effects, and this phenomen,,n is described

in some detail in chapter 6.
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Figvu'¢ 8.16. Case 2.2, frictional clloking with supersonic fl.w when 1, > L,=ax and Pn < P*.
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CHAPTER 9

NONADIABATIC FLOW IN PIPES

As mentioned in the general discussion of pipe flow in chapter 8, straightforward analyti-

cal solutions are available for special cases of compressible pipe flow with heat transfer.

The most common of these is the case of isothermal flow tcoastant temperature) with friction,

which generally applies to very long pipelines with relatively low maeh-number [low. A

second case is that of relatively short pipes with high heat transfer (usually deliberate) and

in which the frictional effects are assumed to be negligible, relative to the heating or cooling

effects. A third case is one in which the effects of both friction and heat transfer are signifi-

cant, resulting in a more complex problem that requires the use of the special techniques.

ISOTHERMAL FRICTIONAL FLOW IN PIPES

Features of lsothermal PipQ Flow

When gases are transported over long distances in pipes, the static temperature tends

to remain at the surrounding ambient temperature as a resuh of heat transfer from the

surroundings. This tendency t,ward constant temperature is increased by !ong pipe length.

low gas velocity, and absence of thermal insulation. In such pipelines, the total frictional

pressure loss is generally high. and to assume incompressible flow (constant density_ would

us,_ally result in poor calculational acctiracy, in spite .f 1,_w math numbers, in this section.

therefore, the same assumptions are made as in adiabatic frictional flow. exceot that sufficient

heat is assumed to be added to maintain omstant temperature.

Governing Equations

Lquations (8.i) and (8.2_ of chapter 8 reduce to the following for is,thermal flow:

dP dy _9.1)
P -y

d:ll_ d//2 2( dl/'_
u_ --V;--' = \-t- / _9.2_

Equations i8.1.t and (8.5) remain unchanged as

d_' ! ( dJ'i: _ dV
T=-? -

325 99_ 0-69 13
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and

dL k l,l _ d"
dP kbl" "_f -F-) _ = 0--- + --_-- (9.4)p4-,2/

Proper combination of ihese flmr equations yields the explicit differential relation between

the frictional length and math number

M 2 _(l_k,!/12]. (____L) (9.5)

An important difference between adiabatic and isothermal flow can be identified by

comparing equation (9.5) with the equivalent adiabatic flow equation 18.10). For adiabatic

flow, the choked condition can be identified at the point where the factor _1 -M% approaches

zero at M=I. In the case of isothermal flow, the equivalent factor is (1-kM 2) which

establishes the choked condition at a value ofM = 1/X/k, rather than unity.

It is convenient to establisi, the limits of integration of equation (9.5) from some upstream

reference point of distance measurement where L = O, and the mach number is M, to a point
downstream where the roach number reaches the choked value, M=M**= 1/V_, This

point is selected since it can be shown that M tends toward this value from either the subsonic

or supersonic flow conditions in the same way M tends toward the value of unity in adiabatic

pipe flow. This condition can be reached, therefore, only at the end of the pipe, which is
said to be at a discancc Lmax trom the arbitrary reference point.

Integrating

yields

f t dL = f ,,,( l- k.,l'-\ F / .t ,,., _,_-_ ) ¢rvv

/L,_x\ 1- kM z
19.61

The equation can also be applied to a length of pipe L between two real points by sub-

tracting the distances in the same manner described in chapter 8 and in accordance with

figure 8.4 and equation (8.26t.
Sub._titution of equation (9.6) into equation _8.26) yields

L) 1--kM[ l-k.t,l_ [,14_f -D = k,_l_ kM._ _-in ti_/ (9.7)

It is possible to convert equation 19.7) into a more useful form which directly relates mass

flow rate, ',he pressures at points 1 and 2, and the frictional distance. The flow properties

which occur at the choked location. L,,ax, are utihzed since these values are fixed independ-

ently of the chosen upstream locations 1 and 2 and are, therefore, a fixed constant for a given

pipe flow. These properties are designated by the superscript **

From the definition of local math number and for constant temperature, ,_,I varies only
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with vel.ci1_, and is dhectb prol.)ortiona+ t. it. The c.nditi,ms at an up._tream p_dnt _au b,+

re|ate_] directE Io the t'Oll,tiliotl+ at Lmax t,v

_! x_]+: t
f-= i-_-_ a,,d __.__;_: (\._i) II

From the r,mtinuity eqmtti+m applied h+ r,,titstant-area pipes.

From the perfect-gas law with T c,,nstant.

Combining yields

P .y

t'** 7**

/ .... y*._ I ++v_-_.II (9.8+

Therefore. since P** is c,_:'s',ant %r an)' _iven flow conditk,t, the pressure and roach nu.;_,_,er_-
at points 1 and 2 at,' rela;ed by

,-I 2

l' It_ (9.9)

Solving equation _9.9) fl_r .I//e and sl*bstitutillg into equation :).7) vieid the l'oJl,)wit,g explicit
equation tSr M_:

'] P ')L x _ l

.u+--=+ _£--=+-,?,, +.

Tile flow parameter tb_ is also completely defined since, as in chapter 8.

so that

F /p,\"- --It "

+, I_
j

<9.11)

Equation (9.11) produce_ _olutions for isothermal fl,,w in an,, perfect gas. regardless of
the specific heal ratio. The solutions are found to coincide exactly- with that of adiabatic

flow of a gas having a value (ff k= 1.O, as established by the direct graphi(' methods of chapter
8, "'Direct Graphic Methods-Suhson;e Fh,w." and ('asp 1.
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F()r cases when the downstream conditions are known, the isothermal flow equation

can be rewrit:en in terms of the downstream conditions by means of equations (8.41 t. I8.42)
and t9.11).

Equati(_, (9.12) also produces s(_lutions which exactly eoim:ide with the charts computed

for adiabatic flow of a _as having a value of k= 1.0. as established fi)r case 2 tch. 8). There-

fore. the evaluation of static pressure changes for isothermal, frictional pipe flow of an._
perfect gas can be made without approximation using the charts that describe adiabatic

flow of a gas having k= 1.0. The choked flow lines also apply since P2/PI = Mi]_].2 and
M._,= l/_¢'k at the choked condition. When an upstream reservoir enters the problem, the

property changes at the pipe entrance normally cannot be considered isothermal due to the

abrupt change, and the case 3 chart for k= 1.0 is not generally applicable to the isothermal

flow of all Ferfect gases. However. for the usual case of unheated isothermal flow, the
isothermal assumption is valid only with low roach-number flows. Also, the entrance

effects are described as an equivalent value off(L/l)) which usually never exceeds unity.

The case 3 chart data indicate that )'or h)w vatues of 6. and for fIL/D) values less than 1.0,

the fluid temperature change is very small, and the pressure ratio is essentially indeper de,,t

of k. Therefore, the case 3 chart for h = 1.0 can be used tor the isothermal flow ,ff any perfect

gas with little error if the roach number (and 60) is relatively low and the pipe is long. which
is usually the case in isothermal flow.

In addition t- static pressure changes, the changes in fluid density anti stagnation

temperatures and pressures are also (,t" interest. The perfect-gas law requires that

71 P_

,%r the isothermal flow. which is already available from the (:harts.

The isentr, q:)ic stagnation temperature was established by equat[,)n _3.l(h. _hapter 5.

[5.10]

For the isq)therma} ease. equation (5.10) can be written in logarithmic differential f,,rm a,,

_dT_--2={ [ (h--1)lf-' ] d3I_T,, 2 1+ k--) .TI" I12(v!
(9.13)

IAkewise. the isentr(,pic stagnation pressure was established by equation (.,.31) as

[,_.311
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_hich, when _r'iHen m logarithmic diiilerenlial f-rm. is

dll:
-_17 ' _" 1 _t

By pr-i,erJy combining equati.ns qg.l). (9.2), 19.3,. i9.4L (9.13L and (9. I.l,i. lhe ditterential

equalil ns [_lr fluid pr-l-_e'rty changes ('an he obtained in terms ,f the frieliona] pipe length.

dR0

Po

dr,, _ kik-])M, | r(dL_ (9.17)

These equations show the direction .f change in the fluid properties as the fluid pr.gresses

down the pipe is.thermally. ISee table 9.1.I

TABLE 9.1. -- FluiU Property Changes

\ehwitv. math IlUlil[if>F .illd 3|dlZIlillioll h'ntpvrature ............. ,I hlcrea'-es Dec cas '_

g,tagnaliml pre,_,,url,. ............................... .j IIe'cr_a,_es I hwrea...,e_ f,,r I1 ,:. \ 2 t_. _ I I

• i j i)_<,.._,...,,,_i_. \ 7:i-_,: i-_

Tile. inact) nllrilber lends t.ward lhe value of li'_ ]{. _tii<'li replr._elil_ tile limil for c,m-

iintl_llifa isotllerinal ft_lw. -"is indicaied by Magilalilm lei/iperaltlre clialigt-, tlt-al i!qliM lie

added h, tile slrea!ll "i% lltql 11 i_ Jl'ss than 1f\ 7. and heal rllllSl l)(- i-t, lllOVed vih,-ii II i is, grealer

lhan 1t\ k.

[quali-n 19.1.5t wa_, previous]) iniegraied as equalion t9..31 to tmMuce equatiml (9.01.

Substituting equation (9.7)I int,t equations 19.16_ and tO.17) t. eliminate f(dLiD) and illiegratiil7

lleh_een the same limits as befilre resuh in

all(J

L.

'/,- 1" 11-'] _':-

2k
7"' = (<_-_"'--i) [ 1 + (_) .14:} 19.19i7"2*
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Once a_ain, tile. sul)ers(,rit)l ** refers t,) the ('h,)ked th)_ ('on(liti,)rl al tb, e end or'the maxi-

mum length pipe (l'max)- where ti- I/"*:: l/'v)L 'l'he changes wim'h ,),'(',lr b+qwern t_,,

sl:w+'ific points in the pip(" van be ,)brained u,;ing tile It+clmique_- (,|!lined f'or adiabatic fl' _ _r

usir_g: e(luati(m_ ()t"lh("fiwm ()f equation (8.28).

Required Heat Transfe¢

The heat added between tyro p, fints in tlw pipe can be c-rapt|ted tnm, ll,e ('han_¢- in

stagnati('n tempera! ure.

Q; _ -- ,',,( T,,_ - T,,t } <9.20)

The stagnati,m temperature change is oblained from

Tm \T,**/, 1 * +ll_
O.21)

Substitution of equations (9.21) and {9.9) into equation (9.20) produces the direct means for

computing the heat transfer cequired t,, maintain the is(bthermal flow e.ndifi,,n. Then

,311(t

lt_ .2

19.22)

-_-: ..................... :- -- <9.23)

.... -+ .......

1/_i 2

here II ('an be repl`3(ed b.__ usin;z(b = / \/il 1/.

Equ;;tiuns (9.22) am| (9.23) al)pl._ when tlpStl+eam alld <J(,',_tl,lr¢'am flow col)+|ili(,tls are

ke,)v+n, r,++_pe,+tN¢,ly, aud the net'essarv pressure data ('a,_ be taken fr,,tn the dir_.('t grap[)i("

s,luti(ms ()1"('hapter 8. "'Dirc('t (;raphit' ._lethods- Sul)s,nic l"h)_, ""for ,;]=: l.O. Xls ). note

that eq||ali,ns (9.221 and ¢9.23t wvdict that n,, heat tvam.fer b, require,! f+w )h¢' is,,)hermal

ft()w .fa gas ha_ing/, = !.(), as expet't(+d.

It must b(" l'ememherrd that a+ 1,1 ;|l)|woael|es the eh+)ked +alto'. lh+' h(:.at transfvr re-

quire(+, t<) maintain constant temperalur+' be(:,)mes ver_ high and will not ()¢'('llr with<)ttt

deliberat(' heating. Similarly. lar_' and sudden pressure |,)sse.- in piping ('()mp,)nents
(,ar,n<)t l)c _+xpected t() occur is_)thermally.

F:RIC]PIONI_$$ FLOW IN PIPI:$ WITH HI:A'I " i:XCHANGI:

This _eetion considers lhe change in properties of a fluid in a n,madiabatie, c'on,qant.

area. |'riclionless pipe. Physivaily, a simple heating (+r cooling pro(!ess is seld_)m achieved.

|l,),.,,(",er. it+ ('as(+,_ where `3 large t(,ml)(,rature diff(,ren('e is maintained bet,,+,¢'+,n th(, l)i!w
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w;:dl and the: m_ving stream, frictional effects wi]l be relative[,, unimportant compared t.

lhe heating eflk_ct, and tl_e conclusi, ms reached in this paragraph will have a high d,-gree

of validity.

_.s in chapter 8. the analysis i_ made on the assumption _f one-dimensi,_nal flow and

that ttf the perfect ga,_.

The Royleigh Line

:_ssuming no frictional effect and no area chan_e, the continuity equation is, as before

/¢:

Ti t: = 3 = G = constant

Because of the momentum considerations _f the frictionless constant-area flow, the imputse

function defined by equation (5.39_ is found to be constant. Then

P + pV"-= P + _ V"=_=constant

which, when combined with the continuity equation, yields the Rayleigh-hne equation.

p + G"_ = p + t:=--_ _9.24)
g:Y

The Rayleigh line can be plotled as a diagram of h-s. as shown in figure 9.1, in the same

t;tanner as was the Fanno line of chapter 8.

Once again, the point of maximum entropy is the point where the roach number is unit_.

Heating p.

Cooling y

Heatij_rngj

Supersonic _-_

Coolir_g

$

Figure 9.1. R_yleigh line .n b -.s diagram.

The second law of ,hermodynamics requires that entropy increase with heat addition

and decrease with cooling. As t_n the Fanno line, the upper portion of the Rayleigh line

corresponds with subsonic flow and the lower portion corresponds with supersonic flow.

With either subsonic or supersonic flow, heat addition takes the flow process toward roach

number _f unity at which point the flow is said to becr_me choked. Hea_ addition greater

than that which will cause choking at the pipe exit will result in a reduced flow rate _and

upstream math number} and the process will be defined by a different Rayleigh line. The

reduced upstream math number will be consislent with the heat transfer and :.hoked flow.

187



i

I"

COI,IPRESSED G,t_ H.4'VDBOOK

Governing Equations

The Rayleigh-line equations that establish the fluid property changes are based on the
usual definitions of a perfect gas anti math number and the conservation laws. It is found

most convenient, on-'e again, to relate all fluid property changes to the common mass flow

parameter, tile roach number. Proceeding with reference to the n,madiabatic frictionless

pipe model of figure 9.2. the continuity equation for constant area is

ltJ

y_V_ = y=,V, = _= constant 19.25t

In the absence of friction, ec,nservation of momentum requires that

P_A + p,AV_ ----P.,_ .r p_v4V'.2,

and when combined with equation (9.25)

IM

PI-P". =g--_{V.,.- Vl_

1 O 2
M 1 M2
P_ P2

T 1 T2

I 2

Pol Po2

Tol To2

Figure 9.2. Fri,'ti,,nle_,_ pipe flow with heat transfer.

Also. since for a perfect gas. pVZ=kP._,l '-'. the static-pressure change <.an be defined by

By the perfect-gas law.

The definition of math number yields

P_ 1 + k,14_
------- (9.26)
P, l+kM_

P,,.=_
P, y,T_ i9.27)

_9.23)
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Tht_ density ralio is oblainrd by (-ombi_v,n._,, equations {9.26L (9.27k and l_.29), yiehliaa

?t Vz \;1_1\!+_11_/
_9.30)

Applying the first law of thermodynamics, the change in entropy (,an be established as

t.
Substituting equations q9.26) and (9.29) yields

_ _ -AT-

._s-C_jL = In
,'_ _..)!,/ k I -+ k II.:/ j

{9.31 )

The stagnation pressure change is ()btainvd using lh¢" d(-finir+g eq'iation (5.31) and the stati(--

pressure ratio of e(luati(,n (9.26)

-q
- t] &; I

v,)., (Ltk)t;_ FI '_---i
(,9.32)

Finally. the stagnation t(emperalure ('iiange is obta|ned fr,)m lhe defining e(lualion (,5.10t

Substituting T.z/T_ from equation (9.29) yields

" L /,--1

)9.33)
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it should be m_ted, at this [.,int. that all the fluid prol._rty t'hanges are established in

terms of changes in tile math number and without a specification of the heat transferred

between the two pipe hwation.. I arm 2. A key relationship is rv'quired to asso_'iate Ihe

heat tran._fer t,, the ,'h,:nge in nla, h nu,"abe_. This key relationship van be obtained in

terms of the stagnati,m temper;xtu:es from the first law of thermodynan|ic,_ applied t,J the

open system. In the absence t,f ele_,ational change and work. the steady-flow energy equa-
lion. (|.5). reduces to

h.,_ h,+ _ri:- r,_-'= h,,,_
2_-J

Als- fi;r perfect gases.

, V_ A I

O' = c.{T,.,-T, __- _=: cplT,,, - T,,,t

which cau be rearranged as

To, c.T,,,

It is often desitable to convert this equation to a fi,rm which involves total heat-transfer

rate and weight flow rates by noting that

/A' It'

Then the required t.-mpcrature ratio becomes

T,r_, I _- Q --

Tot U'CpTot
_9.35)

which is generall_ computable when the heat-transfer rate anti the flow con.'iitions at one

of the pipe locations are known.

The use t)f the Rayleigh-line equation_, as derived above, is usually prohibitively complex

due to the complex functions inwdving roach number, it has been found convenient, once

again, to normalize the equations by referencing the conditions that exist where 14= 1.

which is a constant for any particular flow. Location 1 is chosen as the p.int where :14= 1

and. according to usual convention, the various parameters are designated by an * at that

location. The downstream pipe location becomes any location in general and the subscript 2

is deleted. The Ravleigh-line equations can be rewritten in simpler form as follows:

P k + I

P* - 1 + k_lI'- (9.36_

T [(k+ I)M] 2
T--_ -- [ ] .7- _.:_-_j ,9.37,
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Eill=ali,,n+ 19.2,6_ Ihr,,u_h IO.l. l i +it+- pb,tlt'd in figure 9.;_ and in trt,rc r,.adable t'+,rm as

a w,rkin_ ct-+arl in ,'hapter 21).

The plotted _,,lulion._ in figure 9.;+ mh,_w I|+e rf'['eet-_ of heat tran.,+fer, as retle<'ted in a

<'hanw" in 1"0. t'_,r th,w initially +ulwr+oni," and _ub+,miv. For brevity+ the++, effl'rl+ are

li+led in 1able 0.2.

It ran be +een that heating aiway._ redm'em the _lagnati_,n pre+sure.._. Ms+, n+,lire thai

Ihe curve f,,r T/T* ,,f fi_ure 9.3 goes thr+,ugtl a n:axirnllm at +I = I/%"_'. "]'his rorresp,,m|s

t+) the t)-int id" maximum h tm the Rayh-.igh line ,d" figure 9.1. In this case i_f,_ = 1._$. t'or

example. +.ur H,,w+ with a math number between O.P_; and l. heat addition reduce+ the stream

temperall=rr_, and ,'-,ding int'rcases lhe stream temperature.

_ince the r_mditions at l/=l. supersvripte,I *. art" v,,n._lant, the change between any

twt, i),,irlI+ _.ar_ b,' _;blained i:+ the _,aitte manner as de_('ribcd f,,r the l+'ann,,-lint • +'quati-n+

inrhapterS. F,,rexamph..
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Rayleigh line eqdali_;ns (simple 7",,chang:e;

A typical pr, blem might require a cah, ulation ,,f the change in fluid conditions between

an upstream location (designated by the subscript 1). where all the flow conditions are known.

and a downstream Iocati,n idesignated by the subscript 2) due to heat transfer that occurs

between the two locations. The solution can be obtained as foih,ws. Compute tT_/T,u) by

equation (9.35) and read (To/T_h at ,_/_ from Ihe tabulated or charted solution ,ff equation

{9.41). Compute (To/T_)2 by equation (9.42a) and read M_ from the same solution nfequation

(9.41). With both _t/, and M., established, all the other property changes can be obtained

usin_ the known conditions, charted data. and equations of the form of equations {9.42).

Choking Effects of Heating

Althq_ugh shockles_ _;upers,mic pipe flow withf_ul friction can be ehq_ked by a cooling
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pr,,('ess, the asuai problems ,ff choking due to heat transfer are as,*o('iated wit|| beating,

For the ,'a.se of tneating a subs,)niv fl-w at ,',mstztnt anea, the Rayleigh line requires that the

math number of the flow must im'rease. However. the am,unt of increase is limited sint'e

the exit math number cannot exc_'ed unity. [f a ga'eater amount of beat is transferred than

that necessary to cause an exit macil number of unity, the fl,,w will bee(row choked and the

fl_)w rate will be ,'educed correspondingly so that M = l at the exit. This process is analogous

to the subsonic Iranno process (adiabatic frictional flow in pipes) in which the frieti.ual

length ,ff pipe is increased be,¢ond L,_az. the choking length. For flow initially supersonic.

heat addition reduces the flow math number; and once again, there is a limit as a result of

the limiting value of M= I at the exit. Since the supersonic flow is generally supplied by a

choked c,m_erging-diverging m)zzle, the reduction in math number occurs as a result of

changes in fluid conditions, rather than the mass f_)w per unit area. The fluid condition

changes result fr,_m the formation of a normal _h_ek in the diverging section of the nozzle.

which, in turn. causes the oipe flow downstream to become subsonic.

There are other interesting aspects of the simple heating flow process that include

eonsideratkms of various combustion processes and condensation shocks. The_e topics

are withheld as beyond the purlM_be of this handbook. Interested readers are directed to

the presentations of _;hapiro, 1953, for a more complete treatment of the subject.

FlOW WITH COd_INEO FRICTION AND HEAT EXCHANGE

'i'he mechanisms of friction and ileat transfer are so similar that. in general, one cannot

exist entirely without the other. To calculate fluid property changes in heat exchangers, fi)r

example, it is necessary to take into account heat transfer as well as friction, since the effects

of both are ,fignificant. It is assumed that area. specific heat. and molecular weight are con-

_tant b., the respevth, e gas.

General Analysis

For a pipe eh-ment of infinitesimal length, d/.. the rate of heat transfer is expressed by

means of the energy equation in terms of the increase in stagnation enthalpy. It can also be

expressed by means of the c,)cffwient .f heat transfer h, I. in terms of ( 7",,.- Taw )-

st' dQ' = y,t lrv (iT,, : h, I qi'f,,. (T,,. - T,,,, 1 (9.1.3)

The adiabatic wall temperature Ta,,, is the wall temperature achieved with high-speed gas

flow in a thermally insulated pipe. This temperature is dependent (.n the static temperature

of the flowing gas, and the roach number. The adiabatic wall temperature usually" lies be-

tween T and To. and for subsqmic flow in pipes. T:,w can be determined with generally accept-

able a(.curacy as

For subsonic flow. the adiabatic wall temperature does not differ appreciably from the

stagnation temperature. T,,. Moreover. the error ia substituting To for T_, will be small if

the wall temperature T,. is considerably in excess of T_w. In the following it is assumed that

this substitution is p¢rmissible, wlfich is equivaleat to the assumption that the recovery fa('tor
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is unity rather than 0/.10. Substituting To for T_w anti the definition of hydraulic diameter.

drl,,, = _ 4 dL/D, into equation gt).-$3) yields

T,.- T,, \_,Q,y] _ _9.44)

Equation f9 4,4_ can be simplified further using the Reynolds analogy between the roeflicients

of friction ar, d heat transfer. Experiments show that this analogy, which relates the heat-
transfer and friction coefficients according to

is accurate within a small percentage for fully developed turbulent gas flow. Substituting in
equation (9.44) yields

T., - To = dL 19.45)

The steady-flow energy equation can be applied to the pipe element yielding the hdlowing
equation in the absence of work

dO = dh + _,.j / \ 2 ] dh,, = ct, dTo

Substituting the perfect-gas relationships and the definition of math number yields

dQ dT , d_ 'z

The isentropic ,_tagnation temperature has been established as

r,,=r[l M,-,I
,. \ 2 / j

which can he written in logarithmic differential form as

,,.4,,
In chapter 8, equations (8.1k _8.2k 18.4), and (8.5t were written for adiabatic frictional

flow in pipes. These equations were based on the definitions of a perfect gas and math num-

ber and the considelations of continuity and momentum. These equations also apply to this

investigation which includes heat transfer and, when combined with equations {9.46) anti

{9.47) above, comprise six differential equations in eight differential variables.
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A simuhanemis solution of the six equatio))_ ,,in b_ perforn_ed t,, yield tile followhlg

differential rclati,)n among ma(.h number, stagnalion ten)i,(.rature, and frictional length

--- = ÷ .... ) (9._k_i

The coefficients of dTo!To and f( dLtDI are referred to as "influence coefficients." These are

only two of several that ean be identified in a more general analysis that includes mass injec-
tion. work. area change, and so ford, The magnitudes of the influence coet_cients reflect

the strength of the effects of a given independent variable on the dependent variable, such as

dMZ/M 2 in this particular case.

Equation (9.45) relates the frictional length parameter to the stagnation temperature

change by a formulation of the heat transfer and use of the Reynolds analogy. Combining

with equation (9.48) to eliminatef(dL/D) yields

(9.49)

Equations 19.45) and (9.49) provide the general means of solving the pipe-flow problems

in,_olving friction and heat transfer. =_dditional equations are necessary, however, to con-

vert the solutions obtained in the form ,)f M. To, and f(L/D) to the other fluid properties.

The necessary equations van be obtained from the perfect-gas law. continuity equation for

constant flow rate and area. anti the definitions ,ff the roach number and stagnation properties.

t'., ,r,
(9._0)

.... /T,>"- 1)1't -3') _,)!._,.

I, yj_
t, Ta (9.52)

-- = (9.53_

T, ,_,,, / + (_);J

'+ -s-
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The solution of a specific pipe-flow problem having friction and heat transfer using the

above analysis requires a further specification of the heat-transfer process. The f(dl.wing

sections will include the treatment f)f the cases of constant pipe-wall temperature and constant
heat flux.

Constant Wall Teml_toture

In some practical applications the pipe-wall temperature can be assumed constant. For

example, when the pipe or tube is a good thermal conductor, surrounded by a constant

pressure bath of condensing vapor or a boiling liquid, the tube wall can generally be con-

sidered at the constant temperature of the bath throughout its submerged length. Then,

since Tw is independent of location in the pipe. equation 19.45) can be integrated directly from

the upstream pipe location !1) where L = 0. to the downstream location where L = Lz, yielding

/r._l\
Lr__.,_

which can also be soNed explicitly for (?;,..,/To,) as

= _ (r,,. ')
T,,, T,,, _T,,,- 1, e

f/,2

tq.55b)

Equation 19.55a) provides the explicit relationship between the fricti,_nal pipe length and

change m stagnation temperatur_-, wh,._n the initial conditions lal hwati,m I b and pipe-wall

temperature and friction factor are known. It can be seen i'r(_m equation {9.55b) that |,,r

large pipe lengths, the _townstream stagr, ation temperature appr(_aches the wall temperature.

Evaluation of any other fluid properties at the downstream l,,cation requires a solution

of eql_ath,n t9.49) liw the (4)ang_ _ in ma¢h number. Equation 19.49) cannot t)e it_tegrated

in cl,sed analytical form because of its complexity and must be integrated numerically _,l

ffraphically with the aid ,_f equati,,ns t9.55). Conventional meth_ds ,_f finite diff,'rence

appr_,ximations, applied to short pipe segments, or small changes in To can be used with an

iterative procedure to 9r,;duce an accurate solution fi_r ,14e. A digital-computer soluti.n is

recommended. Once z!te value of _/e i_ established, all the other fluid properly changes can

be obtained using equal,ons (9.50t thr_mgh (9.54).

An approximate solution can be obtained in closed analytical t_,rm when the math

.number is low. thereby eliminating the lengthy numerical method fi,r the more commq,n

case of .II _< 0.3. It was shown previously that equations (8.1). (8.2). t8.41, and (8.5) ('an be

applied to fricti_)nal pipe flow with heat transfer as well as t, adiabatic ttow. Likewise, the

definitions of _t_gr_ation pressure and temperature, as written in h_garithmic differential form

as equati,,us (8.6) and t9.47_, also apply. The equations can be ('_,ml)ined t_) produce

4W,, k lf'-' FdT,, . (t/"
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Further substitution ,)f dT0 from equation (9.45) viebls

.)

i
)

. / P,, \

ILl 0 [

(9.56)

Generalizing the downstream conditions {removing the subscript 2) and combining equations

{9.50). (9.53k and t9.54) yield

M'_ (9.57)

Substituting this expression of M"z into equation (9.56) yields

.o /r,,_,.ro__+ ro,l dL (9._)

The left side of equation (9.58) is easily integrated, but the right side can be integrated

only if simplifying assumptions can be made. Expanding the factor involving M in a binovaiai

expansion yields

]"-'1+ ,$I2 s--_: 1+ Mz+" • •

Inspection of this eqaation reveals that for small valut:s (,f M. the function (ff ,_! is nearly
c(mstant. Hen(:e. if the function is assumed to have constan| mean value over the interval

of integration, the relative error in evaluating the change in P,, will be only a small percentage

if :_I < O.3.

Integrating o,'er the pipe length L !between locations ! and 2) yields

' ..o.. + /_ l',, (T_, r,,\

The average value of the math-number term ts found by taking the average of the term

evaluated with M=/14j and M=:14_. When M=M, the term is unity. When M=M.,.

the term is found to be equal t(;

19"/'
325- 994 O. b9 --14

_,i ¸ • , _,
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with the aid of equations (9.50_ thn)ugh 0.54). Then the average value

(9.59)

and the stagnation-pressure equation becomes

(9.6O)

Equation (9.55b) can be generalized by replacing ?(n with the length-dependent To, and the

pipe length Lz with the variable pipe length L, resu'ting in

This value of To can be substituted into equation (9.60) and integrated over the pipe length
resulting in the following equation for stagnation-pressure ratio

p--_o)]= 1-(_)M, [f(_-) (_ol) 1) (e-_'_-l)] ,0.61),T.....,j

Although the equation does not define P_r,/P,, explicitly and the value of M._,remains unknown.

a brief trial-and-error solution prtMuces both unknown quantities. P(e/P., and M..,/M_. A

first trial can be made by assuming the average value of the math-number term of equation
(9.59) to be unity. This eliminates the unknown terms of equation tO.61), and an approximate

value of Pp.,/P,,, can be computed. In the second and following trims. TodT,, is computed by

equation (9.55bL P,vz/P,, is that computed in the previous trial, and M._,/M) is obtained by

equation (9.57) in which M=M.,.. P,,=P,_z. and To=T_rz. Although equation i9.57) cannot

be solved explicitly for M... a fortunate coincidence occurs in that the solution of the isentropL-

area ratio funct_:on (:an be used in this solution. SpecificMly. because of the similarity (,t"

the two functions, the value of 3,1_ can be established at a value of(A/A*)M._, compmed as

= ,,__p0,I
./T,,,.

(9.62)

The isentropic area ratios can be read directly from the plotted solutions found in chapter 16.

The iterative solution of equation (9.61) should be carried out until an acceptable agree-
ment is reached between the assumed value of P(rz/P,), and the calculated value that results.

The associated value of Mz is then correct and can be used to establish the ohanges in all the
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other fluid properties using equations {9.50) tl:rough _..q4!. "l he a_ilotlnt of heal transferred

can be readily c, mlputed from the ._ta_nati<m temperature than+/,." by

Q' = %( T,,+ - T,, ) = q,7',,, kT,, - 1 !]
Btu/Ibm

and as a heat-transfer rate

O = uQ' Btu/sec 19.63i

C_nstont Heat Flux

For this case it is assumed that the heat flux per unit pipe wall area is the same throughout

the length tff pipe under consideration. Such a situation can result when the pipe or tube is

electrically heated. Then with constant heat flux, the heat-transfer equation +eq+ (9.43))

requires that the temperature difference (T,_- T,w). which is essentially T+-T,, must be a

constant when hq is constant. Then for constant h_

and equation 19.'_) b{ comes

T,..- T,,:: 7.,, - T,,,

T_.,- - To,
t9.64)

Equation (9.641 ('an be integrated directly to pr{_duee the change in stagnation temperature

with distance along the pipe.

T,. -- T,,, =fL] (9.65)
T,,., - T0, 21)

As in the case of constant wall temperature, the mach number mu,.;t be evaluated at the

downstream hmation befl,re the changes in all the other fluid properties can be establish,_d.

Once again, equation (9.,1.9) must be integrated numerically or graphically ¢,ver the pipe

length, with the aid of equation (9._5), using finite difference methods and a lengthy iterative

[)ro<.ess.

F',+r low math numbers, an approximate procedure can be written equivalent to that

.developed previously for the constant wall temperature problem. When this procedure _s

earr.ed out. the fldlowing equation, equivalent to equation i9.61), is obtained.

(,%:(r,.1

The procedure for solving equation (9.66) is identical to that outlined for solving equation

_9.61 t. including the use of the isentropic area ratio solutions.
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CHAPTER 10

COMPRESSIBLE FLOW THROUGH COMPONENTS

/"

Tllis analysis of flow through components is directed primarily to the flow characteristics

of fully open valves. The more complex variable operating characteristics of flow-control
valves are beyond the scope of this handle)ok, although brief discussions of valve-opening

characteristics and pressure regulators are presented in the next two sections.

COMPONENT PRESSURE LOSS AND FLOW CAPACITY

Tile pressure h)ss through a fixed-orifice pneumatic component. _;uch a._ a fully ,)pen

valve, usually ¢ann_t be established fn,m a purely theoretical appn_ach. The diff,.cuhy
stems from '.he complex flow paths anti the wide variations that exist in the manv desi+ns

that are available. Comp, ment rnanufactt, rers have established empirical equations which

describe the fl,,w capacity of their c+_mponents in terms ,ff the pressures, pressure drop.

and the _as properiies. Invariably. s,_tne type ,_t' _,_w ¢+,_tffwient, which is used as a measure

,,t the ,+retail cap_lcity ,,f the component, is factored int<_ each ,,t+tht + equati, ms. Unfortu-

nately, a relatively large number ,,f _tightly different equations ha+ c,+me into use that incor

pq_rates several tH:i+tuely defined fl+,w coefficients. I.ack of standardizati,m has resulted in

serious problems f,,r pneum:_tic -vstvn_ designers. After c,msi,terable research and industry
c,+nsultation. Slawsky et al. t195S) ,_f the Pneumatic: Laborat_ry of the National Bureau of

Standards have suggested a standard for definin_ fl;,w capacity artd pressure drop acr<,ss fl,+w

c,,mponents.
The NBS Flow Factor for Air

;t has been found experimentally that the standard temperature airflow chara,'teristics

.f fully ,_pen valves ap.d similar flow-restricting components tar. be described approximately

bv the expressitm

qS(.PMI,=K "_ P]-P'_ scfm ,flair

where K' is a c,mstan! ,_t" pr,_porti,mality, depending on the fluid pr,,perties, the flow path

geometry, and the fluid friction ,_ffert, d by the c,_mp_nent. Note that pressures are .measur,'d

specifically in the c,,mm,m units of lhtTin. 2 ahs !ps;ia_. Defining the ratio of d,_wnstream l,_

up_tre_ttn pr,t.s_ure a_ r= P_,/rP: yields

tS('.FM), = K'p,\ l - r"

201

P]_P_C_D[NG PA(;_ B,t,A.X_K_()T FI-LMED

...... '.... ._ _,i _



i

CO_IPRESNED[; IN H.!%DB_OK

The experimental data al_ reveal that for perfect gases the empirical constant of propor-

tionality K' is independent of the upstream abso!mc pressure I'_. Therefore. a K' fact,_r

which is evaluated at one pressure can be used at any pressure it"the inlet air t_.mperature is

held constant. If the new pressure is sufficiently different fr, ml the tested pressure such

that the compressibility factor (Z =- PvlRT) .r the specdic h..it rati- of the air is changed

appreciably, treatmem of the gas as a real gas is recommended. The necessary correcti-ns

will be outlined subsequently ,_l,n,g ,vith temperature corrections. Since K' is indepemtent ,A'
p,. the pressute and flow terms can be combined so that

(S('FMh = K' X/i- rz scfm/psia
pl

Based on this equation, the flow characteristics of a component can theoretically be defined

by a single, airflow test which establishes K' for the test gas at the test temperature.

When the flow test is performed with air at standard temperature 160° FI and at a pres-

sure ratio Ir= 1/2). the value of flow rate per unit upstream absolute pressur_ measured at

that flow condition is defined as the "'National l_ureau of Standards flow factor. F,_ .r F_.'"

The value of F,i represents the approximate maximum capacity of the component, usin_ air

at standard temperature as the reference gas. since the flow rate increases at pressure ratios

less than one-half are generally slight. Then the constant K' can be evaluated in terms
of,%

Y - tL,

and the chara('leristic flow eqlnati.n for lhe c,,mp,,nent t,cc,mies

F,t xl'_ I1 - r_
fh

(10.2)

The fl,,_, fact.r is rapt dimensiol_Dss and can he specified m any air mass flow rat," and pres-
sure iiniis such as the C,lintii,_iily use_t scfna/psia for F,l and Ibmisec-t_ia for F<,.. TI,.. n_er-

sion between standard cubic feel alld mass fli>w units is -biained from lhe perfect-gas law

evahiali,m of volume at standard letnperalure and pre_sllre.

_'sld :--(T)std _'_ li '

Then the relation betl_een the tw,i c,lnlni,ln units ,if fl,_w rates is qbhtained |t_ differt'ntialing

with rcsltecl li_ iinle and Slltlslituliil7 the standard values .ff the pressure and lcnlpcralure.

yic!,|ing

520 )S(:F'M=f,ll tli.llt!l.;i Rtc
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SCF%I = 11.75Rw scfm (10.3)

[t shq,uld be noted that the eonversi(m _s dependent oi,the gas cm_stant R. resulting in a

different c(mversi,)n factor f,)r eact_ gas. F_)r air. _here R = 53.30 ft-tbf'!bm-°H

and
ISCFMh = ( 14.75)(53.36)u,,

(SCF.Mh sefm
= 796 ........ t,:.r air

uq Ibm/see

Likewise. since the flow factor Fv is defined fi)r air only. the conversion between F units is

equal to the same constant as the flow _mit conversion. Then

Fq= 786F,,

These conversions can be substituted into equation (10.2) to demonstrate the general nature

of the pressure ratio function.

F_, =F,.p-----_='q 3 t'l-r2)
(10.4)

It was stated that. theoretically, the th,w factor can be established by a sin_e flow test.

Howeeer, to obtain accuracy, the flow test should cover a wide range of pressure rati,)s, r.

and the best curve of the pressure ratio function sho,qd be fitted to produce the most accurate

value of Fq for the range of ,:xpected flow rates.

Extensive study of experimental data from the National Bureau of Standards has verified

that equation (10.4! yields a conserve, tire prediction of flow rates through components m that

the avtual pressure drop is usually equal to or slightly less th3n the prediction. O): dm oppo-

site extreme _he t\,lh,wing similar pressure ratio function can be used to predict the maximum

flow rates at a given pressure ratio.

_SCFM!..
= 2\/r{1-r) _10 5l

F,,Pl

Equatim_ i 10.5) is an approximation of the isentropie flow fi)rmula and represents components
which cause very little loss of stagnation pressure.

A third equation has been written which predicts flow rates between th,,se of equati,ms
_10.4} and d0.5)

tSCFMt_=\/ 5 rll-r)(3-r) I10.6t
F@,

F'inally. there is a f, mrfit empirical equation in wide use

(SCFM)_ = 37). 75d_{ Vr( r°'4a - r°.7_)

203



f

i

C(,qlPRJt.'N',.b..llp t; I'; I1¢ _Db t_¢,PK

v_hu*h, when con_'erted i131o t_'le general terms _,t' /",1- is

/",g_t

N.te that tile ,NBS I'h;w t'act-r (/;',_or/;',, ) i,_ applic:th[e t,, eacil qfftht.se equali_m,, at'c,rd-
•ng to its definition, since

IS_:I"M_,

pt
when

1
r _

2

The norma!ized equations t10.4) through q10.7) have been plotted io figure 10.1 for com-

parison. Most test data fall within lhe band defined by equations {10.4) and 110.5_. There-

fore, the intermediate curve of equation (10.6) can be expected to predict flow rates and

pressure drops that are as accurate as can be expected from an empirical curve applied to

all fully open components in general. The reader is cautioned against overconfidence in

using these equations fi_r prediet:.ng flow through untested components. For example, it
is known that fi_r valves having low-resistance flow characteristics because of internal l_rt

sizes approaching that of the inside diameter of its assc.t'iated pipe. the choking pressure

ratio will be well above r= 0.5. Therefi_re. cases ean be expected where the characteristic

curve will fall even farther to the right on figure lO.i than that of equation 110.7). When

numerous comp.-,nents are connected in parallel, the combined system flow fa{'tor is deter-

mined as the sum of the flow factors of the individual components. Hence. fiDrcomponents

connected in paralk.[

/",. = Fz + F_ _ F:_4- • • •

_,'hen equation (10.4) is osed for each ,f a t_.umber of comp_,nents connecte,': in series,

the torah;ned flow factor F,. can also be computed for the series in terms of the individual

flow factors. The series of components can then be treated as a single component, and the

pressure ratio eorre.,ponds to ttie pressures upstream of the first uotl)ponent and downstream

of the last component. For a two-component serie,_, the combined fl,,_w facu,r can be deter-

mined from equation !lO.J,) to be

FY,.
Fc

x/-P]+ F:'-,

Similarly. for three and four c.omponents, respectively.

and

F,F,.F:_

_/'tF_P',. !" + tF._,F:o"z+ IF_F:_

Ft, _

FY.,F:Y,

"v (F_F=,F:_ e+ (F.,F:Y,_ + F,b,_,_-+ t_J :,F,_
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Note that the arrangement _lf terms in each of the equations is such thlil ililiepelldPnl

tit' the order in which the ct_mponents are installed. The equati.n fl,r i'. _'an easily be

extended to de.,,cribe the overall flow factor for a series _,f any number of _'omponents.

Perfect Gases Other Than Air at Standard Temperature

Since the NBS flow factor is established for airfh,w at standard temperature, a means _,|

correcting f,:r different temperatures amt for gases other than standard air is needed _'hile
there is no exact means -f correcting the eml_iri_'al equations, it has been sugge+ted that

corrections developed hit nozzles and orifices should be applied. In chapter -Z. equation

_7.1 l i was developed to describe isentropic flow through nozzles and orifices installed in pipes.

Rearrangin_ sli_zhtly to incorporate the area .4, in the mas_ flow parameter instead of 4_,.

equation iT.! 1 ! becomes

w i_ rl'_lri_-r) 11'_
,,l/PI _____<._[(__2_k ) _-A-7-_r_-_: _1 =//(r"k'DI)

Likewise. the direct graphic solutions of frictional adiabatic pipe flow derived in chapter 8

indicate the existence of a complex bu', explicit relationship involvit_g the same dimensionless

flow parameter.

6 - u' (RT, Jr. k.
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[n +'_t'h ,,It these adiabat.' II,,,,+' t'asc+, the llt,+ pal+_nwler +art,:,.+ with pre....+ure ratio,

.-pt't-+h4' ll<.'_it rat+4+,an41 ,I _elilllPtri,'a] fa_'tor _,hich de.,<,ril,_'_ lhe fl, iw pith If tile +ulial,ati<'
i+,+w thr,,ugh _..mpl,n+-nt..+ i.+ J.+sutn+'d t- lip _flr'rted bv ¢han++.._ itt flu- ma.+ <',,n,+lant ,._d

up++treaP+l temperature in the _ame [tlanner a_ i_ ,i}lo'l_It analyti,_lllv for adi_ib+_t_t' n,,zzh.s

and pip_-+, then the .++me ++imple <'orreetiol|S ¢+.In he :lpphed to th,- _'_Jlnpi_nt.nt tl.w ++qtiali.n

f,lr standard tPmperatl|re ktir. which wa_+ written a_

ire, =-_ =/'<'+)

in the.' empirical equat;on+ the flow area and ge+_nletri<'al factor are ('+,mbined inh+ the NB_

flow factors Fq and F,,.. and k is not represented at all.

The correction for different gas t,nnstants and changes in upstream temperature can be

determined for any given upstream pressure and fixed values of k, r, and the geometrical

factor. Note that with either the nozzle equation or pipe flow equation

w RV_ = {wV_-'T,++,.y ,of _a.= constant

Applyin_

st, that

lis to component flow by substituting the ex_'ession for w, yields

li- _ _ / • + / . += {u",_; R.,T_)+_s temp_,+=1't ,.PJ!r)pv t,_3.,16) i5201

'w / R (,5_)=f(r) (10.8)

ft,r any perfect gas having the same value of k as air (1.4). Since the spe<.ific heat ratio term

does not exist in the empirical component flow equation, correcti,ns for variations in k cann,t

be made. This discrepancy is not considered serious, however, except in the high pressure-

drop range. Only here have changes in/+ been h+und to be effective with adiabatic nozzles

and adiabatic pipe flow. Also, because of the approximate nature t,f the empirica', equations
associated with the NBS fh,w factor, a rigorous evaluation of the small eft'rots of changes in

k is not justified except in eases of conditions that approach choked flow in the component.

Equation 110.8_ can be converted to units of scfm by substitutin_ equation !10.3) and the

associated relationship

= iSCFMI, - _14.T5)(53.36)

which yields the general expression for SCFM

SCFM (]) //53.36\{T_F+ _ %/t..--_-"-) _._)=f(r> 110.9)

t
Note that the convers..on from mass flow rate units to ur_its of standard volumetric flow

rate <which is also a mass flow rate) inverts the gas constan: ratio under the radical. The
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_'tle,1 gase.-* are used at high pressure and/or at low temperature, the bchavi,,r is nlJt

accurately described by the perfect-gas law. Therefore. the c,,rrecti.us derived from the

exact flow relationships f-r adiabatic nozzles and pipe flow mu_t be further modified h, account

t'-r the real-gas effects. A detailed analysis of real-gas effects ,,n pipe flow ('an be I'_)und in

chapters 4 and 8. Specifically. if the real-gas effects on the flow characteristics of com-

ponents are assumed to he the same as the effects on th¢ _)w cbaracteristies of nozzles and

pipes, then the same m_Mifications can he applied to the empirical relationships of equations

(10.8) and _10.9). Therefore. just as equations (8.55a) and {8.55b) of chapter 19 were modified

for real gases to produce etluations (B.55f) and 18.55g). equations (10.8) and (10.9) modified
for real gases with the compressibility factor become

and

"  ,-g-f61=f t"

ti0 Ii)

410.12)

The function f(r) still represents any .f the fi)ur functions defined by equations (10.4)through

110.7). The means tier a('r.unting for an, gas other than air at standa, d temperature is seen

to involve only a generalization of the flow parameter. The variation of the isentropic ex-

ponent k._ t'-r real gases, which is usually accounted for as the additional variable in the pres-

sure ratio funrlion, is neghq'ted once again as was k with perfect gases. "]'he error involved

is not expected t_ be significant for the usual range of pr-ssure ratios which are greater than

apprr_ximately I).85. _hen accurate pressure-drop characteristics are required for untested

components, especially those intended for ,,.r,dcc at very high pressure and/or low tempera-

ture, actual testing .f the components is recommended. The te_ts should be perfi_rmed,
preferably, with the gas to be used and at gas conditions that duplicate as closely as possible

the expected .perating conditions.

Conversion Factors Relating Flow Coefficients

There are three widely used flow coethcients that are different fr-m the NBS flow factor.

F, -r F,,. These three-C,, d,. and K-which will be defined in order, describe the major

portion of available components. Only conversions between these and the NBS fa(tor will
be examined here.

C, is a coefficient based on incompressible fluid flow and is defined as the rate of flow of

60 ° F water, in galhms per minute, that will exist in the component with a differential pressure

of 1 psid across the component. C,. is based on the water flow formula

(GPM),.. = C,.k/p_ -- p.,
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.

f+

1

(_JIII'KE',.'+bI_ ¢, l.'+ t! #\DI¢_,+h

,(;I'%1+,+ ::: ('.\ pi_l - r+ _pm -f (a+° I+",.++tler i II). 12+

F,,r i:u ,,.gm'-++ibh" fl,,v+ ,,f ant, flt, id. th+. +,dum+'triv tl.++ l'itte' I%111be ,,btain.d l'r, mt th+. lh+r -

n+mlii mtuati.n, m_,dilied b_, the tit,+, +'t..llh'ient. :s in <'h:.ipt+'r .. _rit;n_ etluati,,n +7.15_ in

term.+ ,,f _,-olum+.triv flow rate yieh|,_

I

q=41k,. _'_g,. (igl'_l'')\----_] ft:%e+'

In term.., of gallon+ per minute.

GPM= +q. fta/sec)17.48, gallft +) t60. see�rain)

OI P

(;PM = 448.8+q+ gpm

Then by substiluti.n, for any incompressible fluid.

(;PM---12(,I.I&8.K,. q2g,. (_) gpm

The ratio -f airflow 1+.4) to water flow liT') for a zive-+ _',mlponent. _pl. and disvhazge

coefficient is. in terms of gpm.

r

t(;PM)_ /3'.__ /y.R,T+

<(;PM_. = _/y, _/ P,

_ln(|

i(;PM) _ = _/: t(;PM)..

Substituting equation ( 10.13_ for ((;PM), and converting P t,) p yieh|

../y_,,R;T, C,. \:p, il--r)
(C.PM)_= ¥ l_t4p_

or

gpm
1,2

This flow is e,mverted t. units of sefm by
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_hrre, from the F_-rt'ecl-_a,_ law,

The conver,_ion is being performed for the NBS tt,,_ t'a_'tor defined f-r air al ,aandard

temperature only. Therefore,

Finally.

T, = T_t,i = 520 ° R and T_,...a= 1
Ti

{SCFM),= (7.-'_)(/_,L--_a)(1_)V_I,I,.RrtTI{ ] --r)
scfm

Then fi_r Ti = 520 ° R and y_= 62.4 Ibm/ft 3

or

1
{SC[?M)'=Pt(_2)[{7._iiI4.7)]_(53.36)(520)(1-r)

(SCFMh=O.997C,=p,V_I --r scfm of air at 60 ° F (10.14)

By the definition of Fq

(SCF.M_, = p,FJ(r)

wheref(r) can be any of the functions defined by equations (10.4t through {10.7). Equating
the two expressions yields lhe conversion between the NBS flow factor and the C_. factor
established from water flow tests.

=0.997( - g
\ f(r) /

(10.15)

Before equation (10.15i can be used. a decision must be reached regarding the pres-

sure ratio at which the compressible and incompressible equations should be tied together.

In accordance with the NBS convention, all functionsf(r) must have a value of 1.0 at r= 1/2.

since a given component should flow a fixed quantity of fluid per unit upstream pressure

at that pressure ratio, regardless of the function used to describe it. On this erroneous

basis, the reference pressure ratio for use in equation (10.15) should be r= 0.5, and the corre-

sponding value off(0.5) will be unity, regardless of the function used. Then

= 0.705
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I'he u,,e .f lhi_ 4.nver_i,,n fac_-r wilh all lht. _,nq)iricM t"uncli,m_ will rr_ldl in Iheir _mif-rm.

but _rrone.us, predh'li, m -f lik., fl.w capacity at r = I/2 t-r a given t.',, yah... _ls., lhi_

_ow ¢apa('ily will c.rre_p.mt with thai Predh'led by Ihe i._'.)mpre_ibl_, rqualh,n i lU l l).

Whh'h i_ n.t ac,'urate m predictin_ airflow at r= I/2.

Equation ( lO. I _.) and. therefore, ,'quation t ll). 1,3t al_,, are valid only _htql the vtl]tl_'".d I"

i._ ,_et h, _tnity. _illce equation t lO. l li was derived ,m the basis of an in_'.mpre_ible fluid

.nly. In e|l'ect, the' two equ:ltu_ns tie to_,ether the compressible fl_,w equatitm and the

incompressible flow equation, and these relati,_nships can be _imuhaneously valht .nl_ m

the low pressure-drop region, where r is essentially unit_'.

It is also evident fr-m equation _!0.15) that, on this b._sis, _he con_er,_ion Detween

b',_ am| C_ is dependent on the particular empiri,_ai pressure ratio function assumed fi,r the

e,mponent flew characteristic. For the relationship of equation _tO.4_

_/('_) (l-rz) ,=,

and

= O.097

_//(_) {|--r){I-i-r)
, r:|

,I0.16a)

Similarly, for equations {I0.5L _1().6}, anti 110.7). respectively.

(,_-_'t= 0.4985 _10.16b)
\L,./

(cF_.q)= 0.5580 (]O. 16c)

(F,A
_,.1 = O. m2 ilO. 16d}

The conversions from the equivalent orifice diameter, do, and the head loss factor.
K, can be done in a similar fashion. However, since these factors are also derived from

water flow tests, they can be related directly to an equivalent value of C,,. This equivalent

C,, is then converted to Fq by means of equations {10.16a_ through {10.16d).

It was shown in the preceding development that for any incompressible fluid

(,PM = 12 ¢448.81,4K,. _/2g_ gpm
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['he equivalerlt ,'rili,'e ,,f ,li;tmc-ter d,, i_ m_'a._ured m inch¢.._ md Is based ,,n an J.,s_jmed

fh,w c,,_f_ci_.nl Kr. Then h,r c,mw.lth-nce, c,msi&-r water H.win_, at 60 ° I'"

/r ' ' ') I,J, .)I

"li.l"l'l. h! the detin{tiiln ,it" C,..

IGPMht = C,. %,Apl

Eqaaiing the two separate equa_h,ns yields the c,nversi,,n factor

C,.= _.Sg,. d__,

Since the general practice is to define lhe equivalent orifice as one with a flow coefficient of

/G = 0.60. the conversion factor bec.mes

Cr = 17.9_r_ (10. I 7)

The direct conversion between d,, and F_t is obtained by substituting the expression

for Cr into equations {10.161.

The head loss factor K. which can also be written in terms of an equivalent pipe length

and the full_ turbulenl friction factor K =f{ L/D). can be related to C,, by a similar procedure.

By definition, for incompressible t#ow

K=f(I,/D) ....
API --: 144Apl

t,V____ yt,"
2 2g<.

Substituting V= ql,4 and solving for q yields

12gcAp, ft:Vs-¢
q=lZ4._/ yK

Using the previously developed relationship GPM=448.8(q). the foregoing expression is

rewritten as

GPM = 12(448.8).4 _ y-_

For 60 ° F water. _=62.4 Ibm/ft :_ and

,/2132.2)Ap,
{GPMh,.= 12(448.8L4 _/ 6_
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Equating this to the definition ,d'C, yields the ¢°,nver.don

.t

and in lerms _bl'the inside diameter o1' a circular pipe D measured in inches

D' I- 1 t!O. 18i

Note that the flow area ,4 {or the pipe inside diameter D) on which K is empirically based

must be known befi,re the conversion can be made to any of the other flow factors. K is

generally based on the inside diameter of the pipe to which the component is conneeted.

Equation i10.18_ can also be substituted into equation {10.16) to obtain the direct conversion

between K and Fq.

Combining equations {10.17) and {10.18) produces the direct relation between do and K.

d,, = 17.4.8 {--_7"_ =
{10.19)

Other well-defined flow coefficients (,an be converted to Fq by similar procedures.

It is especially desirable to c_,nvert all flow eoefBcients of a group of series-('_mnected com-

ponents to the NBS flow factor, if this is d;me. the combined system flow factor F,.. based

on the pressure ratio function of equation t10.1.). ('an be t'omputed and the whole series
('an then be treated as a single unit.

Component flow and capacity coefficients are subject to wide variations even among

components of the same general type. Coefficients taken from several sources are tabulated

in chapter 14. %hen a need exists fi)r great accuracy in pred|cting pressure drop and

flow capacity, the components should be subjected to testing at conditions which closely

duplicate the important flow conditioas. _'hen less accuracy is required, the tabulated
values are recommended. The wide variation fi)und in the tabulated values indicates

that good engineering judgment sh, mld be exercised in selecting values so that realistic.
but conservative, predictions will result. Valve-flow fat:ors should be obtained from the

manufacturer whenever possible.

Component Equivalence With Frictional Pipes

An additional method of correlating the compressible flow characteristics ,,|" components

lies in the p_,ssible equivalence with some specific length of adiabatic frictional pipe. A

similar procedure is widely accepted h_r the analysis _}f incompressible flow. in which the

component head loss factors and flow coefficients are expressed as equivalent len_hs of
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,_traight pipe, h, which the completely turbulent friction factor .ulust be applied. K =f(L/D).

These correlations have been demonstrated in chapter 3 and in this chapter in the paragraph

describing flow c,,efticient conversions, in fact. the incompressible flow factors [K,f(L/D).

C,. and d,,] have already been applied to the compressible flow problem in terms of the NBS

flow fact,r and the 6_ur ass_,'iated pressure ratio functions qeqs. ( 10. t) thrq_ugh I lO.Tt). These

applicati4,ns of the incompressible flow coe_cients t_ the compressible flow problem are

considered acceptable because the factors were assumed equivalent only in the incom-

pressible flow range (where the compr,'s_ible flow pressure ratio is essentially unity and the

flow is essentially zeroL

It will now be shown that the use of the direct graphic solutions, devel,ped in chapter 8

for the compressible flow in pipes, merely substitutes the more rigorous pressure ratio

functions in place of the strictly empirical component flow functions of equatiens II0.4)

through (10.7). The exact equivalence in the incompressible flow regime (pressure rati,:s

near unity) between the {b, charts of chapter 19 and incompressible flow theory can be

proven as follows. For incompressible flow

By substituting V from the continuity equation V= w/y/I, and rearranging, the incompressible

flow equation can be written precisely in terms of the compressible flow parameter

Superimposing a plot of equation _10.20_ on the logarithmic charts of (bt in ._'hapter 19

reveals that the incompressible data plot into a straight line hav_ng a slope of exactly two.

The straight lines are also found to coincide exactly with the compressible pipe flow solutions

in the high pressure'ratio (incompressible) region of the charts. Therefl_re, the ttow coeffi-

cient f(L/D), as used in the incompressible flow equation, is seen to be equi,alent to the

compressible frictional length parameter {described by the same symbols} as it occars in

the more comp|ex compressible-flow solutions for adiabatic pipes.

Then, in the incompressible flow range, the flow-versus-pressure-drop predictioas

obtained from the incompressible flow theory, the empirical compressible flow functions

associated with the NBS flow factor, and the compressible pipe flow charts are all identical

and valid. However, as the pressure drop and flow are increased, the compressible flow

solutions for a _ven f(L/D) deviate from the straight-line variation (on the logarithmic 6_

plot} with increasing slope, which accounts for the increasing velocity, and the slope becomes

infinite at the point of choking. The point of infinite slope occurs with the empirical formulas

of equations {10.4), {10.5), and (10.6) at pressure ratios P._,/P_= O, 0.5, and OA51, respectively.

A study of the 6_ charts indicates that the choking-pressure ratio toe pipes is a variable

depending strongly on the value of f(L/O) and the specific heat ratio. Specifically, the

choking-pressure ratio decreases _ith increases in either {or both) f(L/D) and k. It can

also be sh_wn that the lines of con,_tant f(L/D) approach the straight lines iincompressibleD

325 9940-6_--t5
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ot equation (10.20) as a limit, as k. _r the isentropic exponent /,, {for rta{ gases; is increased

tt_ large values.

Altinougln the direr, application of the ;upe flow charts to compon¢,tt /tow is expected

t_ yield satisfactory correlations _eil int4_ the compressible flow regime- ¢.reat accura_-_

cannot be expected at conditions approaching the 1:.6nt of ch,,king and bey,rod. This is

b,'cause of the usual existence ola redm,ed flow area somewhere in the {'omponent which

_ill choke at a lower flow rate than that of an equivalent constant-area pipe. The cboking-

pressure ratio is primarily dependent on the minimum flow area within the coml_ment rela-

t ve to the flow area of the connecting pipit, g. as in the case of sin,ruth nozzles, and als,, ,,.n

the pressure-:ecovery characteristics afforded by the flow-path geometry downstream of

the minimum area. The choking-pressure ratio should not be expected to be as well defined

_s that of smooth nozzles as a result of the pressure recovery within the comI_ment and the

possible variation in flow-stream contraction. Stream contraction downstream of the min-

imum area. as occurs with choked sharp-edged orifices at the vena contracta, may have a

significant effect on the compressible flow characteristics of components near and ab_bve the

apparent choked flow conditions.

The equivalent pipe-length method using the _b, charts offers additional advantages by

providing established means for compensating for the variation in specific heat ratio and the

real-gas effects experienced at high pressures. _s discussed in chapters 4 and 8. The

method also permits the component to be included ip. a pipeline analysis simply as additional

pipe.

Based on the above discussion, the e_luivalent pipe-length method of correlating the

compressible flow c:mracteristics of fully open components, such as valves, consists of the

direct application of the graphic solutions for compressible pipe flow developed in chapter 8.

Application should be limited to flow rates which are significantly less than that which will

cause choking in the minimum flow area region of the component. This chokin;_ flow rate

may be considerably less than that predicted for straight pipes, as indicated by the choked

flow lines on the 6_ charts. The component flow parameter, written in the most general

form t,, include _ real-gas effects, is the same. as {-_iuatior: _8.55) _,t' chapter 19. Repeating.

u 0.22, vz,t r, tx0.21,,t6, = ("/k) M, =-_, g," \rzu I'

and in terms of standard cubic feet per minute

t scum¢5, = 15.21 \l_-p_D2 /

where A and D are that of the c_nnecting piping.

The values of equivalent f{L/D) can be obtained by rearranging the flow coefficient

conversions developed previously as equations ( 10.16o _. { t0.17_. {10.18). and 110.19_.

/)4 =890 l)4 =2.77 _ (10.22)f k=332 F-_,]
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"l'hell. at a gi-.t.n up+tr_'ant fl++w c_m<iiti+m identified +++ycquati.n._ iI0.__I I. anti th,. etluivaleul

lr.'tional length paranl+'te'r ,distained from equ.iti,m (I0.22+ l-r the. ,',mq.ment. th," d,,wn-

stream+t,-upstream pressure ratio is read dir+','tly on the appropriate- thw chart selected on
the tm.,,is _f k or k+.

Repeating an ear!ier ._tatement for empha,_i-_, when very act'urate pressure-drop _'har-

acteristics are required fi_r eompon_.nts+ especially when intended fibr service at very high

pressure, actual flow tests should be performed. Preterably. the tests _.honld be performed

at c.mditions that accurately duplicate the imp_rtant fl,,w ct,,diti<ms in every respect. l'he
test data redu<'tion t!_ the general form _,t the tbt charts is ref'.mmended s+_ that any equiva-

lence with straight pipe ean be identified, and so that the gen_'ralized characteristics can be

applied to other gases and flow conditions.

VALVE OPENING FLOW CHARACTERISTICS

Valves are often designed to provide a special characteristic curve of flow versus position

of the valve stem or operator, Thes_ vMves are generally of the globe valve configuration

consisting of an orifice which is closed by insertion of a stem-mounted plug. The flow

through the partially open valve is controlled by pro,iding a shaped extension to the plug

so that the flow is throttled through the annular space between the shaped plug all A :b__orifice
port. The shape of the plug extension establishes the flow characteristics of the valve as

shown on figure 10.2.

Linear Valves

The plug contour of a valve having linear characteristics is shown as sketch ! of figure
10.2. The associated characteristic curve of flow-versus-plug travel is curve 1 on the ac-

companying _aph. The flow is seen to be directly proportional to the _tern travel from the
oh;seal positi_m.

Equal Percentage Valves

Sketch 2 describes a plug extension which will produce equal percentage changes in

flow for a given increment of stem travel, regardless c,f the particular initial position qex('ept

for positions very near the closed position). The percentage changes are based on the flow

at the initial valve position, and are not percentages of the fully open flow capacity. By

defining the variable flow capacity C, as the fraction of the fully open capacity C,., and the
stem travel r+ as the fracti,,n _f tile maximunl stem travel, tlw fl.w characteristic of the

equal percentage v-dye is defined mathematically as

dC
-- = K' dx (10.23)
C

f-

Mathematically. such a valve will never close completely, so the characteristic curve

of a practical design is interrupted near the closed position by placing a shoulder and seat

on the plug which affords a quick closure from that point. The constant of proportionality.
defined here as K'. relates the incremental percentage change in C with the incremental

change in positi.n dx. The ;'alue of K' will be established by the selection of any arbitrary

lower end point iC0+ x,,_ of the characteristic curve. Since the curve must pass through the
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l(_)-percent vaiue .f ¢+a_'h. (" and ._. the upper limit, of inte_rati_m q,t'equali_,n !J0.23_ are
est|bl|st|edasunitv. Then

J, 7?-+--I_' <t,:
Then. in_egratin+z

+,...

:14 the lower end point tC,:. x,,l.

so that

Therefi_re.

and

In C. = K'(x,,- 1

K'-- In Co
++'_o- 1

lnC= x -l] In C'_=ln +,C,,)_+_-J+'': +_

C---C<_t'r I.r,,..l_= C_3 ,._ r,, +10.24+_

The p,_sition-dependenl "_alve c,,e.-'h<._ent is then

C,.(xl = CC,.= C,C,,'; " _ '"_ _10.25_

(:urve 2 of figure 10.2 is a pl.t .f eqttation 110,241 with a,,= C.= 0.03. X aires naming equal

percentagt, characteristics provide uniform flow s÷nsitivity to stem m,vem¢+t.t_, over "the
entire rap.ge .f s:ern travel b.,y,,nd x,,. Equal percentage characteristics are desirable for

precise ;+-w c.ntrut and in appli¢'alions wher,, large and fast chan_es in valve ll:_v+rate must
be aw_ided.

Quick-Opening Valves

The plug +_ta qui<'k-,_pening valve has no it>lug extetl+i,_n, and a t_pical phi:: <+t+th!s type
i,, shown in sketci_ S, +.X.character|st|, itow curve is identified as curve 3 which sh+r,++_t_le

rapid rate of increase in flow with stem travel. The initial porti(,n ,+f the curve is hnear and

retiects the slraight-tine variation of flow area with ph:g ,tispla¢+ement from the seJt. For

this configurati_m, where the th,w area of the entrance channel is equal to th++ area ,)t' the

orifice fl_rmed by the valve seal. a plu_ displm.ement ,,f one-fl)urth the+ seal diameter will

provide a flow area equal to thai ,ff the v, ide ,)pen orifice. Plug movement bey_mt] that point
increases flo++ ,rely slightly.

Piu_ exten,i_,ns can be shapt+d t- pru_,ide a vari,qy ,_t char_:cteristics, dependit_ un the
particular al,ldicati,,n, h shuuht be n,_ted thal the uharacteristics are often bas_'d _,_ the

water flow test fi,r C,.. Ther<+f,,rt +. an_, applicati,,n .f such valves t,, c,,mpressible fl,,_ cir-

cuits must be sul,jecte,t to a c(,nsiderati.n .f the c,,mplexities ,fl" (',mvertintz the C,. factor '<,

the c,,mlee,_sibh" fl_,w characteristic,_ d,'scribed ir_ "'(_,>nlponel+lt Pressure l+,,ss and Fl,,w
¢kq>+:+'itv."
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I_ESSUilE REGULATORS

Pre_,ure re+tel<if,,r+, are +p+','ialite<l .:!waratu_+ thai perl,,rm ail a<tlv+, r-h" in l,rletin=alic

+ystenvs. :% the r:,am,+` hnl,li,'_, pre..+_+tlr, +` r+-;ul,lt,,r-+ ,ir¢" jen++rall_, l=..+.+l l,, pr,.luc+. 3ulil.

re.ilk'all) a ,'o+istant +tegulatedi pr+.s.,.ur+. +za._ ÷,,t,,-+e. _+v+.r <i v, kh. rmu_+. _,i" tt+,_, raft'.. Ir-rn

a +ouri'e ,ff hi_hel" ,LIld variable llre_+llre.

Ol_rotion

l)re+sure reguLitor" ('_insist of three functiimal element_: the restricting elenlent, the

measuring clement, and the Ioadin_ element.

The restricting element throttles the flow in _arving degrees t,, i,r*Muee the required

flow with fixed downstream pressure This element is ,_ften of the ._ame general c,nfigura-

lion as a gl,)be valve with variable stem _or plug) position.

The measuning element sense_ the downstream pressure am| feeds back this pressure

information in terms of a mechanical force acting on the m,,vable stern _f the restricting

element. Downstream pressure tends to close the val_e ,d the re._tricting element, usually

by means of the diaphragm or piston of the measuring element.

The loading element provides a mechanical force that +,pposes the force (,f the measuring

element. The lnading force can be provided by+ a deadweight, a spring, an independently

provided pressure acting ml a diaphragm _,r pist-n, and so forth The loading element is

usually desi_led so that the I,ading fi,rce is essentially constant during normal iwerathin.

yet is adjustable to suit particular applications.

The measuring elevr|ent tend_ 1t+ close the valve, and the loading eleme_lt tends to

,,pen the valve, h| steady+state ttow operati,m the two opposin_ fi,r('es are iust halan('ed.

as required to maintain the valve slem m,,tionh'ss in a partially +,pen position. In the better

regutatq)r designs, the variable differential pressure fi_rces avtin_ _)n the restricting element

<plug) are co_:nlerbalancett _eparately s_, that these otherwise unbalanced tk_rces will not

affect the position of the ,_tertL "the restricting elen|_qqt is then free t_) virluall_, float through-

out the entire range frmn full closed to full _)pen. wilb corresponding variation in flow rate.

while 311_raVS maintaining the balanced <',mditi_m betv+een tile loading and nlea._uring eh'-

ments+ ]'hen a.y imbalance thai occurs between the ('onsdallt load|net torte :rod the ,)pp,,s-

_ng t',)rce dr'|eloped by the measured outlet pressure wit! ,'at_+se valve-stem vnovement in

the direeti,,n necessary t,, rest+_re the balance. For _+xam_th'. a decrease in outlet pre._sure.

caused by an in,'rease in flo_., d+q_+and downstream, opens the valve to whatever position

nevessarv I,_ el'store the outlet pre,_sure and rebalance the r,'Kulator f.rce+; at the increased

flt)_ rate+

Flow Charoctoristic+

The fully op+m flow characteristics of a regulator can be pl.ttP+d in the same manner as

that .f ord_n;+r+v valves+ as sh,+wn in figure 10.3 in the too.st _encral fi,rm. The partially

open flo_ curses are even subdivisions ,ff the l(Rt-pe_t.ent-capaeity cur_e. There|++re. if

the partial open-fl.w characteristics o e the plug are known from a plot such as figure 10.2.

vhe actual plug position can also be established.

Fi+r Wen upstream conditions and fl,_w rate. the plotted flow pararo.eter can be computed.

For a v,mstant upstream pressure, tile pressure ratio P._,/P_ will remain ,',+nstarvt due t- lhe

action ,,f the re+ulat,,r in maintaining P_ constant. Theref.re. the operati<m ,)f the regulator

with t',mstant upstream conditi_ms wili be described ideally by a vertical limp ,_+n figure 103.
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Fiilurr 10.3. Preset*re re_x;,'ator tl, bw 4'hara_'teristi_ _.

P

as shown, if the upstream pressure is reduced, the operating line must b{_ shifted to the

right, reflecling the change in PI and t P,.,/PI). _.lso. if the mass flow rate and the _>ther

upstream c,_nditions are heht constant, the change in P_ causes lb.." {,perating point to be at

a higher value of the tt_>w pazameler as well. Theret'_re. reducing the upstream pressure

shifts the _)perating p_,int up and to the right, causing the regulator to operate nearer its full

capacity, e_t-n th,_ugh the mass flow rate is unchanged. This important characteristic will

be demonstrated by tb.e fi,llowing example using the hypothetk-al curves of figure 10.3.

,Xssume the regulat,_r is flowing 50 percent of the maximum capacity flow (based on

P..,/P_ --- 0) with an upstream pressure _1' 6t)I)0 psia and a regulated downstream l._ressure of

3()1X) psia. The _peratin_ point. 1, ,wcurs _,n the line at P,./P_=0.5 and at about 52 percent

of full capacity at that pressure ratio. Now assume that the upstrea-n pressure falls to

4(XH) psia, and all oth{'r conditions, including flow rate, remain unchanged. The change in

P_ increases tP._,/P,) to 0.75. _ince the outlet pressure remains constant and increases 'he

generalized flow parameter by a factor of 6000/4000 to a value of 75. The relativel_ small

variation in Z and k for a real gas is neg/ected for simplicity. The new operating conditions,

point 2. require the regulator to operate at about 90 percent of its capacity, even though

the mass flow rate and downstream conditions are largely unchanged.

if the upstream pressure fails to 3333 psia with unchanged flow rate. the flo_ parameter

is increased t_ a value of 90, and the regulated pressure ratio should be 0.90. However.

note that this _peratin_ point. 3. falls outside the maximum capacity curve. Consequently,

the regulator tannest regulate at these flow c,_nditions, and if tht. fl_)w rate is still n_aintained
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_',,ns_ant. the act_m[ operating p.inl. 3. will ,,cc,,r ,,n the maximum ('apat'ii_, line al an unregu-
lated value ,)t P:/Pt. lit thi_ case. Pz/P, =l).tJ.5. The u,re,qdatcd .tJtl,'t pre.,sure is

_,hich is ]es_ thap the set press_tre of 31X)0 psia.

The operating curve ,n figure 10.3 has been drawn i,teaily as a vertical iinP ir,dicating

i:erl'ect pressure regulation over th:_ entire ran.,._: of flow capacity with consta,r upstream

c,nditi,ns. The actual operating line usually de_'iates somewhat from the ideal in various

ways depending on the particular design. For example, if the loading element consists

of a spring, the loading fi_rces decrease with stem displacement from the seat at a rate

dependent on the spring constant. Therefore, the h)ading force, and consequently the

outlet pres:ure, decreases slightly with increased flow rate causing the operating line. as

plotted _n figtlre 10.3. to slant slightly" to the left with a high negative slope.

Frictional forces acting on the stem cause the operating lines obtained during increasing

flow processes to lie at a sliehtty lower value of P../Pz than those obtained with decreasing
flow processes. The resuhin_, curves are similar to h:+stercsis curves that _dentify a narrt_w

range or deadband of outlet pressures that can result with an actqal regulator at a given

setting.
Flow Capacity

The flow capacity of regulators is best determined from the wtri,us manufacturers"

sizing charts since desi;'.n_ vary widely, and the quoted flow factors are ,ften not standardized

nor well defined, in general, the charts are constructed so that the chart can be entered

at the most diflicuh fluid flow c.nditi,ns lhighest flow rate at _owest upstream pressure)

i- identify the model and orifice size required for the particular applicati_m.
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CHAPTER 1 1

THERMODYNAMICS OF PRESSURE VESSELS

The most frequently used approach to the problem of determining the state of a gas in

a tank undergoing, either a charging or discharging operation is to obtain expressions ['or

the state of the fluid from a pure thermodynamic analysis that excludes the complication

of heat transfer. In many cases, however, neglecting the effects of beat transfer can lead

to :_ubstantial error in the prediction of system behavior. In this chapter a variety of system

av.alyses are developed in which heat transfer between the enclosed gas and the receiver

walls is considered. The two types of flow most commonly encountered are analyzed: that

is, the constant mass flow process and blowdown through a critical flow nozzle.

In sections "'Adiabatic Charging" and "Adiabatic Discharging," adiabatic cases are

analyzed fl)r the perfect gas. Sections "'Nonadiabatic Charging" and "Nonadiabatic Dis-

charging" present solutions of gas properties fi,r a perfect gas undergoing processes that

include heat transfer as well as mass transfer, and these" analytical meth_,ds are based upon

those of Reynolds and Ka_s (1058!.

The basic theory describing the processes of pneumatic pressure vessels is the first

la_ ot thermodynavr, ies. Since tht: gas b,_ttle processes are generaily ass, wiated with a

mass transfer, the first law written |t,r th- .pen systevn is found to apply. The following
general equation was written in chapter 1 in the deveh_pment of e_ptation _1.5_.

r /_'V=4 g) ] $11/k

2gJ \g,'J / _.'- _,_,,t

The analysis of pneumatic vessels Isee fig. ll.l't usually permits the fi)llowing assump-

tions to be made with accuracy:

{1_ The specific energy for the system e,, consists only of the internal-energy term u,,.
I2! The work d_ne, ,SWk. is zero tSWk dqws not include ft,_w work_.

13_ The potential-energy term z is negligible.

Also since u +Pv/J + V';2g, l=h + V_/2g, J=h, the first law energy equation reduces to

tll.1)
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where the subscript ¢r denoting properties of the gas of the system is dr_)pped for siinplicity.

/

.. w I:'

--.- \ , _) '"Win Wout

hoin x_. hoout

Figure 11.1. Typical pneumatic pressure vessel.

AOIABATIC CHARGING

Adiabatic charging can be assumed only when the process occurs over a short time

interval so that the heat transfer will he insignificant in spite of the teraperature differences.

Evacuated Receivers

The simplest char_ng process is that of charging an initially evacuated tank under

adiabatic conditions. For this case. d_Z0ut=_=O, znd if the in!et stagna:ion enthalp_ is

_'onstant. the energy equation reduces to the integrable form

resulting in

l ( If'at2 l Wind (t_//l) _ h<) in dJ'in
..1 Ill I1]I ./ll

i lir"u _.x- ( lt_'u), = h., i, g'i.

i

Also. since the receiver was initially empty, the mass in /he system. _', is just the mass
iniected, llf'i_. StYthai //_ = 0 and

u.>=h,, i, (11.2)

For calorically perfect gases tconstant specific heats)

c,.T,_,= e_T,, i,,
OF

and Tz= k T, in (11.3_1_

Px = (tl'li_'-_-;-)kRT_, j. t ll,3bt
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Therefore. it is seen that since k is usually greater than unity, the gas temperature in an

initially evacuated receiver will he greater than the charging gas temperature and. specifically,

higher by the fa(rtor k for cah)rically perfect gas.

Partially Filled R_eivers

If at the start of the charging operation the gas receiver tsysteml contains a mass ,>f

fluid Wt at an internal energy, level ut, the result remains

(Wu).,. - (Wu), = h,, _,,Wl,,

The change in W is just 1¢% so that

which can be reduced to

If the gas is c',dorically perfect,

W,_,u:,- W ,u, = ho ,,,{W:, - W, )

W,,_ _ W/i. ho )o-- ul
w__=+ = t,O.._,,.-

kTo m
----1

fg"__._= kTo i,,-- T, = Ti
W, kT,) ,,,-- T.,_ kT,, i,, T..,

which can also be solved fi)r T._,/T1as

T_ T_

{11.4)

(11.5)

ll 1.6a)

{ kT,)_,_') __ 1
T., _ kT(,i, _, T, :

T, T, lg:_,

W,

(1 ].6b)

Equations (11.6) are plotted as figure ] 1.2 for k = 1.4.

The perfect-gas law IV=PV/RT can be substituted int() equati,)n 111.4) s,) that for a

thermally and calorically perfect gas. the relation between temperature and pressure can be
estabfished as

P2

T___= P_ (ll.7a)

TI ) +

Equation ( ! 1.7a) can also be solved explicitly for pressure ratio as

P...2_"-=\ T, ] \kT,, _,, /
T.)

_kT _.!

(11.7b)
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Fill_ure ! 1.2. Adiabatic char[fng of parlially filled verse|, A= I..L

7
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11

Equations t11.7_ identify the temperature and pressure changes based ,m initial conditions

and inlet gas stagnation temperature. These relati_mships are also included in figure 11.2.

For the special case where the inlet stagnation lemperature is the same as the initial system

lemperature, equati:ms (11.7! further reduce to

anO

r, /e::_+k_
,\p, / 1

P,

_11.Sa)

(1 l.Sb)

Equati_ms (11.8) are plotted as figure 11.3 fi*r various values of k and correspmM with the

lines of constant, T,,JT_= I in figure 11.2. The change in mass can be obtained by

I_',,/IT'I_ (P_/P_)/(T.,./T_). ,mr by using figure 11.2. Accurate working charts of these func-

tions for various values of k are presented in chapter 22.

NONADIABATIC CHARGING

_hen the (,barging princess occurs (_ver a significant time interva], the heat ex(.har_ge

between the enclosed ,gas and the containing vessel should not be neglected,
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Figure I 1.3. ._diabafi_','harvin_,,f a p_rfiatb, filb.d _t._s_lT.,. : T.

General Analysis

lt]quation i l I.IP can be written for the n,,nadiabatic charging process as the f, dh_'ing

rate equation it" the inlet conditi_ms are constant. _ith re|'eren_.e to the sign con_,'ntion
,,|" fi6ure ll..l.

d
d/I ll_u != -" O, -f u'_,_h..... t I 1.9_

Note l}lat, b,_'cause of lhe expected direction of heal lransfor, the he'al-lransler term is _:hanged

in sign ,_o that dQ/dt .... @. An vner_y balance oF the receiver wail can be wrillen as

td 7"..

where (_"ci,,. i_ the tectal or effective heat ('apa('ilance .qf the ('ontainer wall_.

QF T_ T_

225



I

COtlPRES,;gD t; 4'; I! ! %Dltt_og

Th,. heat-transfer h'rms I%t11 be defined ill terl'/l_, lit" tilt- ti]lll ('l}{'t_l'ie|lls. I",,r ttl_" in,*i.te

_ll r[;J_'e

O_ := th,+_4,,._,!T- 7',.) t l I.I I)

Similarly. for the outside _.urfat'e iuninsulated wall .f high ('ondurtivity_

Q,¢ = (h,,.4,.)_(To - T,) f l I. 121

Combinirlg equations t l 1.01, t ] I. I 1L and the dei'lllition U'in _- _'= dff//dt yields

/dTX , [_],.,. .r ,
w_'U_-W)-_ L _. f.-....+._T-kT,,,.)=O t!1.13}

Similarly. combining equations {I 1.10). {11. l l i. and {l 1.12) yields

(dT'_4-[ (h--_4")'+ (h_-4"')'1u, _7 , L --(_.- ---1 T..- T- T.=O t1'.14_L t_c)., j {ff,_),,. j

Equations _11.13) and (11.14) can be written in dimensionless f,,rm as folh)ws. Equation

{11.13) divided bv w_Tl yields

• d T, .

I.I,5)

and equation il 1. I I,) multiplied by IT"du:,T_ _ields

/(IT,,,,\ (B, + B_]T,,, B,

The (limensionless ratios depicted by the subscript , are ,tefined as follows, where the

subscript 1 indicates initial c¢,nditi,ms.

B= (hM..)
(u',c,.)

' (_'c),,

Co, = _¢7_c,.

T

T_

.r... = T_
TI
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Equations {11.15) and t11.16) can be solved generally only by numerical methods and

are subject to the initial conditions that at W.= I. then T, = 1 and T,_.= T..,/TI. The

equations are linear only if the Bow rate is independent ef the temperature. Therefore.

the solution of ee.uations {i 1.15) and (11.16) requires a further specification of the problem.

such as in the cases treated below, after which solutions can be produced in terms of tern-

peratures and contained mass. From this information, the pressures can be obtained

from the perfect-gas law, P. = T,I_',. where P, ---P!PI.

The solution of the simultaneous differential equations {eqs. q11.15) and 411.16)) for

charging processes cannot be obtained unless the _.,ass flow rate is a ('|,nstant. Methods

of solution are d'scussed by Reynolds and Kays (1958).

Isothermal Charging

Isothermal behavior is obtained when C,,. = _ and B_= _. or it"B,== B_ = _. The first

criterion is for isotbermal behavior obtained by receivers having large thermal capacitance.

(ifc),,., acc,_mpanied by a high value of heat-transfer ct.)P{_l_cient. {hq,.],_.)i. The latter criterion
for isothermal behavior is for cases where the mass flow rate is extremely low. The iso-

thermal charging solution is rather trivial, except in the above identification of necessary

criteria, since the temperalure is a constant anti the pressltre-mass relationship is just

P_ IV_
and for real gases

Pz (Z_) IV_e_= _ _ ,ll.171.

Charging at Constant Mass Flow Rate With Heat Transfer to an Isothermal Sink

For most systems the thermal capacitance of the metal receiver walls is much greater

than that of the enclosed gas. T.;terefore. the temperature change of the walls is much

less than that of the gas. A solution is possible for the limiting case of constant wa!} {sink)

temperature: in which case. Co, -=-oe and "/',,=constant. For constant mass flow rate.

w, ---=-1. and eqiJation t l 1.15) ."an be integrated to

T, kT, m* +BiTe,-- (kToi,,- 1 --B_+BiT_.,)W,-_ _= ;11.181
Bi+l
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[']qua|i_n t ll.[8) and pre.,,_ure troln P,== U",T_ at,. pl,tted a-+ fi_nr+"

T,,+ = I.and t.= I.l,.

11.5 f,,r T,..... =1.

T 2

TT
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1.3

1.2

1.1

1.0

..... t

i

J/,_L -iP_'LP, j

3 S

_2

W!

$

7 -9

11

7

P
2

5P_

]"illUll'l" | l..]. (i|lilrllllg .II _,,Ii_I,i111 ,ii,i.- th,_ _!tll h_'al Ira_i_h'r t,, ,,n _,,lherm,il -ink.

I', ..... " I, T,, _ _ _. awl/, .: |, _.

Charging at Constant Mass Flow Rate With Inside Resistance Negligible

_hen the iw_ide resistance appr.aehes zero. the ('0efficient B, approaches ze. Very
large values of Bi ('an be obtained practit'ally it" Ihe mass tto_ rate is '_'¢r'_ h_w, if the ir,sidt"

heat conductance is high. if the heat-transfer area is large..r any c_,mbinati.n of these. The

importance ,,f this solution is thai it establishes the effect ,_f thermal capacitance ,,f the

containing ves...+,l on the thermodynamic behavior of the ,'ontail,ed gas. For B,= =, the
other terms of equation !i 1.15) become negligible, and T_ = T,,,. The variati,m ,Hf T+ rand

T,,.,) t',m be ebtained from equation !11.16). but .nly alter B, has been eliminated b', _',,m-

bining with equation _11.15). The resulting equation written for constant mass flow tale
iu,, = ] I is

dW,
(g", + C,,.)--_T_--, + (1 -+-B_)T, -kT. ,,.- B_T,_. = 0 +! I. 19t

Equation (] ]. 19_ can he integrated to. produce the f.llowing el,_sed solution

T*=T,,,*=(I--_ ) (1 + I_--'_T,, +.*-- _.r_*' t C; _ It.., 1 + B_

+kT_ ..... + B.T+:. ]
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Equation _l 1.20) is plotted in figure 1 I.O. along with P. = W,T,, for low external heat transfer

(B_:=0), T0_,, = l, and k= 1.:$.

T
_2--
T

'!

1.5 • 11

1.2

1.1

1.0

T2/T_,,,/

co. ,_..

f
I

Co..OJ

-Tz .1j rj

f!f

!

5 7 9

7
P2

5

W2

WI

FiJul_ I 1.6. Chafing at constant mast flow with inside resistance negligible.

T.I./TI=I,B.=O. andk =l._$.

I<

- -. .

ADIABATIC DISCHARGING

When the gas in a receiver is permitted to flow out at a rapid rate, the gas remaining in

the receiver can he assumed to expand reversibly and adiabatically (isentropically). There-

fore, the isentropic relationships .Jr equatioris (5.24) through t5.27) can be applied directly

and are repeated here for e_mvenience. However, the enclosed mass term is included since,

in this ease, the total volume is a constant, and the mass term is of interest. Therefore,

and since/7" is a constant.

V

)'I IVi

Then the isentropie equations tot pneumatic pressure vessels and pert'ect ga_es become

(11.21

P, \),,/ \IV,/ \v_/ \T,/
(11.22)

325-994 0-69--16
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rr.., > /v,,_ (v..,V,_=(_V,'_-:

Figure 11.7 is the plotted solution that relates the temperature and pressure changes t_, the

change m enclosed mass.

T 2

T
!

Figure 11-7- Adiabatic discharging 6sentr,picl.

NONADIABATIC DISCHARGING

The differential equations governing the thermodynamics of the pressure vessel dis-

charging process can be developed by an application of the first law of thermodynamics

similar to that applied to the charging process.

General Analysis

In this case. since the mass flow is in an outward direction,

d_ ¸'

u .... (I1.24_
dt

23O
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Applying the energy balance of equati.,,n (ll.l) to the (>pen system, written in terms of a

time-rate equation, yields

d

The sign convention is in accordance with figure 11.8 which is establishe_t once again to

match the expected changes.

Wout,hoout

Figure 11.8. Pressure vessel discharging.

Likewise. an energy balance of the receive, walls can be writt.'n as

dU_. if/c), /dT,,,\d, (11.26)

The heat-transfer rates are described by

(11.27)

Q: = ( hqA,,,)-_(T: - T,,.) 11.28)

C.mbirtation of equations (11.24) through _11.28) yields the f.}lowing two differentia! equations

describing the thermal behavior of the encl¢_sed gas and its conlaining vessel

tiT (hqA,,.)i] ( 11.29)

(I 1.30)

Equations _1i.'29) and (11 30) ('at) be written in dimensi,)nh-ss form as

and

( dT. ] _ ,

"* _;(_I - _?,,7-J T,,, __ET,/ r, , _c,,,: r., :o

(11.31 )

ql 1.32)
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CO UI>RI...'_'.EI_ t_ I_ tl ! _,DH__q)_

_ner_- the. dim_-,_.q,,nh._._ ra!l,,s _ut)._ril)Ac,| with arl ._art' .h-.6val t,, th,._e d.'ti;,ed pr,.vn,,u.l,.

t,,r _',l||:|Ii,,n._ _I l. IS_ a|.l _I I.I6L %- iI__he ,';_t, -t" the dimeu..o_>_it.-,-. ,.qu_t}_m. de.*rribir,_

cl|_r_,|_.._,,luti.:_ ,,l r, luati,,n_ II I.?,I, _u.! ,II.,_,2_ i..._ubie_'t t,, tl|r r,-,lUirru.'nl that _he||

, :_ ]. Vtneft "l', = I amt "L.., - "l'.,n./]'_. |)_lt'_" _.t_,.I.lll. the ,'q_lJIl_,r'n_ ,'all |_ .... t_,e,d ,,en,.r._ll,,

,,niT h,, nu|||vrica{ methods. Tt, ry can he -_,,l_,.d |Or cl,,,s,,d ._oltltio_ -ul'_ it' the m._,_ It-_,,

rate" is a (',_n_ta||t, i;.nd wh,'n th+" pr.hl,',| is f;Irther -_pe,'i_e,l, as m thv i,,ll,,wh_ ,'as,',_.

Discharging at Constant Mats Flaw Rate With Heat Transfer From an Isothermal Source

F.r m:m_ s_s;rms, the thermal rapacitam'r ,ff the metal receiver walls far exceeds 'he

thermal capacitance of the gas. If -_o. the temperature change of the walls is very small

compared t,) that of the _as. A solution .f equation i I 1.31_ {-an be made for the limitin;{ case.

where C.. is essentially infinite, and the only heat transfer is between the gas and the iso-

thermal source _wal]). Then for constant mass flow rate and wall temperature, equation

1 !.31; integrates directly to

( k-- ! + B, - B,T_., )If/, '_-' .sp + B_T,.,
T, = _I 1.33_

k-;+R,

This relationship i_ plotted in |}__ure 1 l.O. along with the a_sociated pressure ratio+ for u'. = 1.

T...= ! and k= 1.4.
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TH_Rtt/)Ig}% I}IH:N OF t'RESSI RE vESSEI._

Discharging Through a Critical Flow Nozzle With Heat Transfer From an Isothermal Source

The ma_ thaw rate thrt_lgh a critical ilow nt._z|e can be _ritten in _lir_en_ionle,_,, form as

tt _ = t/_x, T_ ,1134_

for a discharging receiver Substituting this inio equati_,n _11 31) ahmg with the critrr, m

for a, _mstant source te-mperature. T',r.. yields

[ ,iT. _ _ B, ( T.,. - T. )
if, _dl/_,,, / ( k - l )T, + =.= = 0 t ! 1.33_

Since the ltow rate is a variable, it sh_mld be remembered that/_ (by definition) is still estab-

lished by the initial flow rate. Equation ( i 1.?,5) is seen to be wmlinear, and closed solutions

are not possible. However. since the case is a very common one. numerical solutions have

become available and are plotted, along with pressure change, in figure I 1. I0 for T_., = 1 and

k--- 1.4. Note thai the temperature 4_'reases initially, as in the constant flow rate case but

eventually begin._ to increase once again. This is because the ever-decreasing mass flow

rates cause the e,N,ling effects by expanison t_ he overcome by the heatingeffeets of the walls.

0, ..... i....... ..... , 0=sC ....... .........

I T_ r : i \
0_ _ ] ....... _ ...... L .... a ....... _----L_ _ o

I 0.8 0,6 04 0 2

W,z

Wt

I' illntre I I tO !);,. h*ru'tn_ thr,,_=v.ht, r;ti, 41 fl,,* .,,tt|e _lrh he_t tr.tn,_l,.r ft,,vtt ,it; i,=,_thrrmal -.)urce.

;,0o I ;m,II I ;

Discharge at Cor_tant Ma_ Flow Rate With Imicle Resistance Negligible

if the _._umplit)n can hr made that B, -= _. a clt,_ed-fi)rm _Muti.n of the thermal equations

,,tn t.- made Th." _:olu," ,J B, i. m_:te _erv lart_e when the- ma_ fl.w tale is very _m_dl
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andh,l" tile heat-tr,msG.r (',_eflh'icnt-area product is very high. Ill tilt" limit when B,--- +c.

equati,m <! 1.31_ reduce-; t,, T. =-"T,,,,. which means that the temperatures <,f th<+ en<'h_se, I

gas aud the containing wail vary t,,gether. Th,. variati,_n can be established using equati,m

[ 1.52* by simuhar,+'ou,, s<dution with equatiml ! 11.311 to +'liminate B,. resulting in the loll<+wing

when u'_= [

d/',

lC,,, + tt,,) -_-g-_.- (k- I 4-B, _T, + B_T_,=O
_I 1.36}

Equation t I 1.36_ integrates to

Equation tl 1.37_ is plotted in figure 11.11. along with P.= IV.T.. for w,= 1 and k= 1.4.

_t

2 ---

I c lo
T 2 T 1 !

0.5_ I I __.--_-- -- 0

0.8 0.6 0.4 0.2

W_

W!

I"illure I l. I I. Ih_, harm¢, al t',,n._tanl tu._,_s _l,,v+vvilh ln'_i,t¢ r¢'+i._t.Jncv +_++_li_ibl¢..H_ :1| and/_ -; [ 1..
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CHAPTER 12

APPLICATION OF FUNDAMENTALS OF THERMODYNAMICS

f

Thermodynamics is the science which treats the mechanical actions or relations of heat.

In this handbook, emphasis is on the thermodynamics of gases or gas systems.

The study of thermodynamics is based on certain observed principles, termed the

zeroth, first, second, and third laws of thermodynamics. (See ch. 1.) In this chapter the

application of the first law to various flow situations is illustrated along with a brief discussion

of temperature and pressure. Also presented in this chapter are abbreviated definitions of

several of the more basic terms used in the science of thermodynamics.

DEFINITIONS OF TERMS

(1) S):_tera.-That portion of the universe to be examined.

i2) Closed system.-System which allows erJergy, but not mass. to cross the system

boundary.

(3) Open svstem.-Systern which allows both energy and mass to cross the system

boundary.

(4_ Surroundincs.-'Fhe universe, exclusive of the system.

(5) State.-A unique set of physical conditions under which the system exists.

16) Property.-Physical quantity which determines the state.
_7) E ttensive property.- Property of a syslen_ which is a function of the amount of

material, as well as the physical state.

(8) lnten ire property.- Property of a system which is independent of the amount of

material, but dependent only on the particular substance and its state.

t9) Process.- The path try,ted by the succession of states between some initial state and

some final state through which a system passes.

110) Qimsi-static process.-A process in which each state attained during the process is

an equilibrium state.

(11) Reversible process.-A process which can be carried to completion and returned

to i',s original state without changing the system or surroundings.

_12) Pure substance.- A substance with an invariant chemical c.mposition,

DETERMINATION OF THE STATE

The state of a substance is determined by the values ,ff Ihe independent pr.perties

a: that slate. The number of properties required to fix the state can he determined by
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Gibbs" phase rule. This rule may be _tated malhemati_:ally as

P'+ I"=C' +2

where P' is the number of phases, V' is the number of intensive variables !independent

properties), and C' is the number of components. As an example, determine the number

of independent properties required to specify the state of gase,,us nitrogen. Since there

is only one component (nitrogen) and one phase (gaseous), Gibbs" phase rule gives

l+F'=l'+2 or V'=2

According to Gibbs' phase rule then, the state of a single phase of a pure substance is com-

pletely defined when the value of two independent properties is specified.

PItESSUR| SCALE

Pressure is defined as the force acting on the system divided by the area o,_er which

the force is in effect.

Ft/lbf_ _ Fflbf\

The common conversion between pre,_sure measurements in lbf/ft" and lbf/in2 is as

follows:

P \in._/ \fff/ 1-_ L_/= IZ_ _in._;

Pressure is measure(| relative to an absolute zero datum, the perfect vacuum. Figure

12.1 shows the relation of the varh)us pressure terms to the datum, zero pressure, and _,b

each other.

Pressures above atmospheric are most often measured in pounds f_rce per square

inch or. ft_r low positive pre._sures in inches of fluid_ usually mercury. Pressure measure-

ments are generally accompiished with a B_,urdon-tube gage or a mercury manometer.
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B,_th of these instruments are shown in figure 12.2. The relation between pressure meas-

urements in pounds force per square inch and height of a fluid column can be found by
summing the forces acting on the fluid of a man,,mewr _.,mnected to a pressure s,mrcc as
in figure 12.3.

V_F= 0

t 12. la_

hi = (p, - p._,),( 1728 ) dnche_ ()f fluid_
Y

In feet of fluid, this equation becomes

Hs = (p,-p_), (144) fleet of fluid) (12.1b)
T

TEMPERATURE SCALE

Temperature is a measure of the kinetic energy of the molecules of a substance. It

is sensed by the degree of hotness or coldne_ and is measured by determining its effect

on the physical properties of some measuring substance. The most common method of

P

r-

L

U
Bourdon Tube Gage

lF'_.gure 12.2. })rc._sllre nleasurcl_ent de_i(._.s.

I
wl

i t

i i
t t

Manometer Tube
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PT P2

#
,,. J

F 2 Pz o

Figure 12,3. Relation between pressure and head.

temperature measurement is the mercury thermometer. 3"his method of temperature

measurement consists of determining the difference in height of a constant area mercury

colum_ when placed in boiling waler and an ice bath. b,th at the same pressure. The

difference in lengdl between these two datum p.ints is taken as 100 ° C ql?,O° F). It is then

assumed that the relati.n between temperature and length .f mercury cMunm (therrnal

expansiom is linear. In the centigrade scale. 0 ° (" is defined as the freezing p.int .f water
(where l. = I..) so that the temperature can be c,,|nptntecl b_

7', _'C=: (}00)
L'-L'.

L_.,,- L,;

The relati, m between the Fahrenheit and centigrade scales can be determined by

n.ting that. as sh,!wn by figure 12.4. there are 180 _ F .r I(X)_ (] between the freezing and

b,,iling p.in!..f water. Hence.

1 ° C = 1.8 ° F

However. note that on the Fahrenheit scale the fr¢,ezing point is at 32 ° instead of 0 ° as on the

centigrade scale. Therefore. the relation betweev, the tw- temperatures is

T,°C T.°F-32

100 18(;

For therm.dynamic analysis, the most frequently used temperature scales art" the

a[_soltlte temperature scales. These are the Keb.in anti the Rankmv scales, and the rela6_m

between these scales and the Fahrenheit and centigrade svales is

T. tR = T. °F" + 460 and T. °K = 7'. _('.--27?,
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l
T

l

/ I00 °C.

0°C. 32 ° F.

212 ° F

1g0 ° F.

Boiling Point of Water

Freezing Point of Water

Figure 12.4. Rela'i_m between Fahrenheil and cen6tzrade scale_

FIRST LAW OF THERMODYNAMICS

The fll_t law ,tf thermodynanlics is an expressi,_n ,_f the law _ff" c,,nservati.n ,_t' energy.

applied h, a tberm,dynamic system.

In analytical form. the first law relates the change in the properties of a system to the

_tmount of heat transferred to or from the system and the amount ,ff work done by or an the

system. The application of the first law is subject to the type of system being analyzed, open

or closed.

Consider the _ener_lized open system sh-wn in figure 12.5. This _ystem has an amount

of }teat. (SQ, transferred t, it and d,_cs an am+rant _f w,_rk. 31T'k. The n_ass _,f flui(t W+, enters

the system, and the mass II",,,t leaves. F, pr this system, the change in the total system

energy, dE(r. is given by

1
,tE,. = aO -. (att'k -_P,,,,,d t?.., - P,,. ,tF,. )+ E,,, - E,,,,,

J
12.'2)

where E is Ihe energy of the masses enter;n,_ and leaving, a! their respe(':ive entran(.e and

exit (',mditions. The term tPd_')/J is a flow-w_,rk term which represents the ('hange in

f

Jr

,5 Wk
f ..... "N

I I
!- dE 1

Win j "; I ' W°ut

,5 Q

b'igt]re 12,5. "|'};,t.rtlltt_J_.t};_oti<. ,![tt.tt _,_ ¢-t'tl
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,_y,_te'nl efler_'v ¢[t|e t_ tnass cr_,_-.,in_ _rb.,t,._y.,t_'nz h_tnd_;r',. H,..zt_'e..t ;'_epre,c-i"tt- an ,:.z;t.r_,,

If'I'll1 t_r ||1_ _,)Ct't y, vstt'.ln i)n[v.

In thermd,dvrlamh' ,ulal,,...l,. th,,. -nervy tt, rnt tt: can r.t.pr¢._.,nt three b,rm- ,,t' t'ftl.'rt.,'_ .t-,

li-_t,t-d beb,w:

kinetic energy -'--......
_g,.J

P,,te ntial ener_zy -= ( _g,. ) J7'_-

HE n('c.,

Internal _'ner£v --- I

E= 2_,.j _- _': +/. i 12.3,z

or by defining the energy per unit ma_s a_ e. it fi,llow._ that

F ___VZ _{ g-Z"]z+u _12.3b_
e=_(=2g, J _./_,,.!

These total energ'y definiti,ms apply to both the enclosed system material and the material

cros.aing the system boundarie,_.

The stepwise form of equation I I 2.2_. supplement,_d b_, equation _12.3_. lend_ itself well

to the solution of highly transient pr,,blems. Each step can be made sui_ciently small, with

conditions chan_ing each time.

When tile pn.:ess is-i_|-a tnore i,i,ntintmus nature, the eqLtati-_ is best used as a quasi-

steady-state rate equati_m. "[his is _btained by dit|'erentiatin_ with respect t,, time. h,hlin_

all intensive properties constant, which yieht,_ the f, dh,wit_.

in - _'J OZlt

t 12.10

.X mass balam'e ,ff the system yic'l.ls

d/T,,

-dt = ui. - u.:.

Equrtion t 12. $) a!s,_ makes us,. of the following definiti,ns:

d;_:
- u = mass flow rate. thin[set.

dt

8(-2 = 0 = rate ,,f heat transfer. Btu/sec
dt
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,+l+.Jdv-||o_+ Im_ce,.+'_TPqtlir_*+ l|+a!
+1+ "['he fl, v+ rat+" +tzn, the ,+s,,:++m i,, Ptltlal 1o that +,tit .,ltb," ,++,+t+.mand w+'illz+'r +,Iri+ "+,

with time
t_) ]'}+I" l'ate of ht+'dl lr+ll+++'r dl'+i| l|+t. rar,' +,It' w,,rk <|++ ll+,l Ydry +il|l tim,-"

i:i) "Phl, +.Idle'+ +)l' lhP _llid d| aI+PI_pmint in tlm +-+v-+IPmdo,.,+, r,,! v+r+ with limP. Th,'n.

B+r the sleady-_ow [m,ee,_.,_. the folh,m ing rely.lib,It.+apply:

...... 0
& d+

14L'tn "_- #4/.u t "_ /4.'t

and lh_ energy equation f,,r lhe open ,_/slem simplifies t,,

')I" +() t.... P,+J_.L " "I _+_+-* e,.
,. • j -.-..,_+,j +,;j ,,,,+++++_-- ,, +-./ ++':+(_;S):

,_ub._lituting lh+" ,luanlilit'_ Q' _vld ul_. defined ,i_+

Q' - +Q.- Bt u/Ibm +twd n-+_-+-++I__... ft.ll,f/Ibm
II" I#"

and the" ++l,mdard ,h't}niti,,n of lht-" th+.rm,,,J+',namic pr,,p,'rly +'nllv_l|,,_.

]1 :: It b l_l'--

./

into _.qu_zti,+n +12+5_ +i,'hb the. fir+l ]as+ expr,',.+_h,rl for the' ,_l_<'vv-+'.'vrsI+'IIIunder ,.+l,'ad'+-.+lale"
c,,nditi, m._

j I+,;++ _I:+++..,°+u++[++?j+:,+,,,+,,,,,,+"+
i. many t'a+e_, the change in elevation is negligible, and the work lernn i.-+zPro. Hence. thi._

further ,_hmplifi<'ati,m yields

t+_;++++.)+o+u+,_,,_+,),,,,, +12.7_

i}r

h,, ,,, ; Q' _: h,, ,,u_
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I:_)llt'l{I.'<,'_,.l_ +'; I.'+ tt I\I_R_J4,A

\,,_ it' lhe H,,w i'_ _i_,, a,li.ll_.Iti_, lJ' i+ zt'r,,. Jml

or

h,p m -_/I,, ,mr

++hh'h mean'.+ it i_ +t _',,nstailt Pp.thalpv -,lagnati, m pr,,<-es_.

rh,+ fir+t law etpr¢.++i,,n |',,r thP ,'l.+t.d _vslenl llla+_ l',+, +,|+lain+++|_inlilarlv fr,,m Plltlalioll

t l_._), eXl+*'p! lh'++l all t+-rm,,+ i,ivi+l¥ill_ l,llP.r_,+' id" the ,has+ lran,+|'erre<J art + +ett,, zt+ril. "Fh,+n

,_',, = 8Q - -j- -----d( g,,e,,i

antl .+im'e _',, is a conslanl.

,i,++ ,J(+i
,,2,_,.i/

On inte_.-rating, the {'hangr,.; in t',m(li{i-f_s {'an he computed by

_'-'- _+' 2_,.j ._,.J (+:_- z; I =+-_:i- , . .' i l2. lOi

_t.'r,v i,/teu itl ,'h,s+-,l ,+ystetus l|le vi.l,,,ily <'han_t's attd elt_vati,,n _'hangt.s are tlegli+iblc;

il+iwhich i.a_+,.

++'++- _+,: I_)+;-+ i 't_j-/_, 112. ',|t
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CHAPTER 13

APPLICATION OF PROPERTIES OF GASES

PERFECTGAS

The thermally perfect gas is. by definition, a gas whose state is described by the equation

Pv = RT [2.51

or in terms of total volume

P_ = IVRT

where R is a gas constant for a particular gas,/'_ values are shown in table 13.1.

the weight of gas is given by

it follow_ that

where

P(=..'VII,,RT ,,r P_= V[_T

[2.5a1"

Also, since

The quantity /_ is a universal gas constant tbaf can be used fl_r all thermally perfe_-! gases.

Dividing by the number of moles N. the peri_ct-ga. equation of state _.an be writlen as

Pv,,, = RT

where ,.-,, is the volume of 1 mole of a gas. Va!ues of the universal _as constant/_ for several
consistent sets of units are shown in table 13.2.

*This equation is a _,ariati,m of equatmn 12,51 and does n,,t appear m oh, 2,
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MIO_RTIB OF THE RIIUq[CT GAS

Intemol lner W and Enlhalli _

]'he internal energy of a sy,;tt,-m repre._nt_ the sum of the kinetic energ) ,)t" the gas

molecules thai" comprise i"he system. F-r the perfect gas. internal energy is a tunc6on of

temperai.nre only. To illustrate the pr_,f.f this statement, c_.nsider the first law ex|.,'essnon
for a ,'h,sed system.

P dt,

du = T sis - -f- I i.61

Differentiating this expression with respect t,, the volume change, holding T consi.ant, and

substituting from the Maxwell relation, equation (1.12l, fi_r (as/i_r)t, it fidlows that

(.u_ T P

_riting the perfect-gas equation of state in differential form with v held constant yi,,ids
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.Nll},,_li||ili,|_ f,.r ._Pi',_l')o m Ibr prt-sl,_ll- ,',lll41i_.n _ie'hl_

L "{:i'/)i J
,-r. tr,,m I_lr p,-rt,','s-Ka, la_

(,!,,j ,.r sr .

I ,ing a _imiktr apl_',,a_'h, it ,'_m iw .i_,wn that ill other pimll_ -( a with T h_hl ,'.llql_lnl

are _r,:. Ile,_'iP. fl,r ,he perferl 1_, inlernil enerl{y iq l fun,'li_,n ,4 temperdlUre ,,niy.

I".nlhalpv i_. Ii_ ,G.hn,li,,., I1_ .ran of tl_ internal enerli_/ and rite l_,w.wq_k term. in

m.ih..m_lu.,d t;wm

Pe

k=.+ j

Smee die I_lmt Pe ,'in r_l_re.qen! d_, I_w work .r the ehanlW in _qy_tem enerl_y aLq
a re.till ,_f ml_, cr-,._inl_ the sy._lem _,,lar_, iÁ I;,ll.w_ lha! enlhalpv i{enerail',' re[,re..l_.l_

in em'r_ term t;,r th," ol_Pn _yqlenl .nly. _inr," enlllalpy i._ m I'uni?tbm ,,f internal ener_

lhirh i. a lemp.-ralute-de'pendent ,p_lnti:y. it f_dh,w_ l|lat lhe enthalpy i..i al_o _1function

.f lemper_ll,re .nl_. _im'e

-:t; ( T_

tla_hll_ _...tal,li_lwd ltlal int('rna] rn{.rg_, and ..nthilp_ are .lept.nd.m ,)n temperature

0.nlv. il l'.lh.w_ lhal al any given lemp_'r;llurc, inl{.rnal en,.rgy a,,t ,'mhalpy ar_- _in_le _ah.'._

and indcl.-ndem ,,! pre._sure, i!-._,,., a_ _hown in fl_!,,Ir," 13.1. _perif_i.i_ ll.nl{._.ralllrl. ;:llrll.:l

LT,. h_, u_ C_,,eanf
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enthalpy ,_r t¢'m|wratttrt, _nd internal energ_j d,_t'_ not _pecif_' the _3tat_ of a perfect ga_.

"[',_ adequah, I)' describe the" ._tale. it is m'ces._ar_' t. specify prt'_sure ,,r s,,me other lemlw, ra-

ture.independent property and either T, u. ,,r h.

._pec_" Heqzts-The _pecific heats of a pur, _ttb.tam'e al constant v,_lume and e,,nstanl

pressure art" ,].fined a_

" : !i.151
t-

UII_|

Since interred enetg7 and enthalplr for a perfect gas axe quantities dependent on tempera-

lure only. it follows thal the specific heats (or a perfect gag may be expressed as

and

du

c,=_ il.15a)*

dh
%=_ (I.16a)t

An important relation between the tw- specific heats can be found from the definition of
enthalpy of a perfect gas written in differential fi;rm.

By sub,|tituting

it fi_lb)w_ that

or

R dT
dh =: du +

J

du = c,. dT antt dh = % dT

el, dT= c,, dT+ R d_.__T
J

R

cv - c,, = _ [2.61

The above relation is ver_ important in thermodynamic analysis, since it shows that

for a perfect gas the difference between the two specific heat quantities is a constant, re-
gardless of the absolute values of these quantities.

*Thi_ equation t_ a var,ati,,n -t'e'iuati_,n ¢ I. 17,_ and ,h_e_ m,l appear in chapter 1.

+Thi_ equatmn is a variati_m ,,f equation 11.16t and d,,e_ n,,t appear in chapter I.
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4PPLIC.4TION OF PROPERTIES OF GASES

If the specific heats are constant, the ratio of these two quantities is a constant, and

from equati.n {2.61

c. R kR

cp Je t, J{k-1) [2.9]
and

f_-I R R
c,. =c,_ c"=J(k- 1) [2.101

where k is the ratio ct,]c,.. With the specific heats constant, equations {l.15a) and {l.16a}

may be simply integrated to yield

and

R
Au = u.,.-- u, = c_T=_ AT

JtK--lt

kR

Ah = h..,- h, = cr2_r=j_ {k - 1--_)AT

The value of the specific heat and the specific heat ratio k depends on the complexity

of the molecular structure of the gas molecule. For a monatomic gas, such as helium, the

kinetic theory predicts values of c,.,, and cm, to be 3 and 5 Btu/molelb-°R, respectively, and

a k value of 1.67. For gases with more complex structure, the value of k decreases but can

never be less than unity. Values of k for several gases are shown in table 13.1.

The normal specific heat values tabulated in table 13.1 ,ire obtained from equations {2.8)

and (2.9) and are often termed the constant pressure zero pressure spe'_fifi¢ heat and the con-

stant volume zero pressure specific heat. This is because they are accurate for moderate

temperature and low pressure only. In h,w-pressure regions the specific heats of actual

gases are only weakly dependent on pressure, and deviations from the normal k values listed

in table 13.1 can be considered a result of temperature only. Several empir;cal equations

for determining the real-gas specific heats at constant pressure are shown in table 2.3 (oh. 2).

In higher pressure regions, the specific heats vary considerably with pressure variation.

Also, the extent of this variation with pressure is affected by the temperature range. In some

ranges of temperature, pressure of 6000 psia does not cause excessive changes in specific

heats: however, in other temperature ranges, variation with pressure may be extreme.

Plotted values of cp and c_.for iive gases are shown in appendixes B through F. The reader

is cautioned against the use of a value of k computed from the real-gas values of specific heats

as an isentropic exponent in the perfect-gas relationships. {See ch. 4 for more on this subject.)

EXAMPLE PROBLEM 13.1

The tank shown in figure 13.2 has a water w)lume of 10.65 ft 3 and is thermally insulated.

Initially, it contains gaseous nitrogen at 85.3 psig and 70 ° F. If the solenoid valve connecting

the tank and the supply line is opened and the tank is charged with gaseous nitrogen at 750

psia and 0 ° F, determine:
{1) Final mass of gas in the tank

(2_ Final temperature of the gas in the tank alter charging
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V = 10.65 ft 3

Pt = 100 psio

T I = 70 ° F.

no

Tank and line am th_mally
insulot_l

IFipre 15.2. Gas storage system schematic.

(3) Heat required to bring gas temperature to 200 ° F
(4) Pressure after required amount of heat is added

Treat the gas as a perfect gas.

SOLUTION

Considering the tank contents as the system, equation _12.2) may be written as

(PP),. (PP)o.,
dE_, --- Ein - Eout A j j

Denoting the initial and final tank conditions by the subscripts 1 and 2. respectively, the fol-

lowing relation is obtained

E,_,-E,=Ei.-E,,ut4 (Pf')ia (P/Y)out
J J

Since no fluid leaves the system, it fi)llows that

E., - El = Ein -4-.
(PP)i.

J

Neglecting the kinetic energy and potential energy terms, equation {12.3a becomes

E = U or E =/Vu
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APPIJCATION OF PROPERTIES OF G.4SES

W2u.z -- W,u, = WjnU)n + _W_(Pv)I.
J

Also, from the definition of enthalpy

therefore.

Since no flow leaves the system.

it follows that

therefore,

Pv

h=u+-y

Win = W_ - W,

(W2- WI)hin = Wzu2- _'lul

1_2 (hm -- _) = W, (hi, -- u, )

W2= W, (hi. -- u,)
kin -- u2

Since the gas is perfect, the internal energy may be expressed

du = c,. dT

and for a constant c,. over the temperature range from Tr to T2.

u.,.-ur =c,.(T2- Tr)

where ur is the internal energy at the reference temperature T_.

internal energy as zero. at Tr of 0 ° R. the above equation reduces to

Since

V= Wv

the temperature may be expressed as

r=t2P
RW

_2 _ CrT2

and Pv=RT

and

Choosing the reference

253



"4.

w_c

k
.,&

COMPRESSED G/IS H,4,'_'DBOOK

By substi{uting this last equation into the equation relating W.z and W) and solving for W..,,
it follows that

W'-' = ffz, (1 -_) + hi: (_)

Since the gas is perfect, W_ can be evaluated at P = 100 psia and T = 70° F as

PJ_

RT_

(lO0)(144)(I0.65)

55.2(70+460)

= 5.24 Ibm

Also, u_ can be evaluated at T= 70 ° F from

u, = CvTI

= O.177(460+ 70)

= 93.8 Btu/lbm

Similarly,

bin = CpTln

= 0.248(460)

= 114 Btt)ilbm

Substituting these values into the previous equation

W.,= 5.24 (1 - 114.0/93"8'_+ {0.117)\114.0(750)(144)(10.65)55.2

= 33.264 Ibm

The final temperature may now be evaluated by

PlY

WR

_ (750) (144) (10.65)
33.264(55.2)

= 627 ° R

= 167 ° F

To determine the heat needed to bring the tank to the required temperature, the first

law energy equation is used. Since there is no work done and no mass enters or leaves,

the first law requires that

dQ= dU= W_ du= W2c,.dT or _Q = W.,c,,( AT)

AQ = 33.264(0.177) (200- 167)

= 194.5 Btu
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APPLICATION OF PROPERTIES OF GASES

At the new temperature, the new system pressure is given by

p=WRT
V

33.3(55.2) (660)
10.65

= 113 200 psf

P 113 200
P=i-_ = 144

= 788 psia

Entropy-Two general expressions for the change in entropy of a perfect gas can he

found from the two first law expressions

and

Utilizing the perfect-gas relations

the above relations become

or

,_lso. by equation (l.7k

or

T ds= du+ P_ v [1,61

vdP
Tds=dh j {1.7]

kR
dh=%dT=_) dT

ds=(c") d--_+(J) d---_vv

ds= j( 1)-T+_J-}-v

_= (_,)a_r_(_R_de
T \J/-P-

kR

F \J] P

1"., R

anti Pv = RT

I2.131

[2.14a]

[2.14b1

[2.151

[2.16a]

[2.16b]
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Pe_R't.C.as I_,cqm_

Constant._'olume Process -- _im'e th<.re is n+_ v,lume change for this pr,,ve,_.,, the w-rk

_iven by _'k= P d_- t_ _ero. _in('e the work term t,_ Lvro, th*" heat tral_,derred durim_ the

proces,_ is reflected by the change in internal enerjzy- hem'e, 1"4_r the ¢lo,_t.d ,_v,_tem

dCJ' ": c,.d7":= [ j (_R i, ] d7' ,2..17,

0!"

The entropy change for this process is given by equation 12.14a1 with d3, = 0 as

oI"

[j,",-,,]'°
Constant-Pressure Process-Since pressure is a constant for this pr_'ess, the reversible

work d+,ae is given by

,u,k_.= P dr= Plve-vt ) 12.1ql

Then, for tF_e closed system the heat transfer is G_tznd as the sum ,ff the internal energy anti

the work, in acc',wdanee with the first law. equation { !.7)

dQ' :: r;, dT- 1' dP
12.201

Then. for the case of constant pressure,

r
kR ]dO' ==LJt--_-_- dr:-: ,+,,,IT [2.211

hR ].ZT=eoAT
AQ'= [J-t k---l)I

Or

For the entropy change, the general equation {2.15_ is selected s{_ that t'4;r the constant-

pressure pro¢ess

or

' [J(k-I \T,/
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I_,#hermut Pruce,_,_-The isothermal pr,)ce_s is a pr-ce_,_ .c_'.rring at _..n,_lant tempe'ra-

ture. _o that for the perfec! ga_

l'r = ,'.nslanl = P,,', =/_T

JIl,I a.L a r+-sult, the f,,lh.wmg equali-tl.+ t;Ik_.tl tro.! .'qli_ti,.,i_ i2.2._,t1 .1lid 12.2_b) _+llq,++lhJl

the w,)rk may he evaluated a_

,tck:-- J " P dv = P, vl dr_v

Pd_;. since the temperature is a constant, it folh)ws from the first law thai the heat transfer

for this process L,;equal to the work done. Hence. for a eonstantoternperaturc process of a

perfect _ in a closed _ystem.

(-?'),,,(p,)

I,-

Re_ersible-.+1diabatic Process-The re,/ersible-adiabatic process is a constant-entrop_

process: hence, lhe first law fl)r a ch_ed sy,_lem ur, dergoing a reversible-adiabatic process

may be written for this process as

P dv

du +--f-= Tds =0 [1.61

If the gas is thermMly perfe('t, it follows that

By writing the perfect-gas equation of state in differential form and substituting for dT in
the foreg.ing equation, the following very useful relation can be .brained

++ -_-=0

which integrates fi_r constant k values to yield

Pv * = constant 12.25]

Also, by use of the perfect-gas equation of state, it may be shown that the f.llowing relations
hob!
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T_

[

r, _,T_ !

_in_,e the pr_-e_s is adiaba:ic, the heat transfer is zero.

"P dr= Pit'*i z dvlwh'_ = v"_

=(kl__l)(Pwi-P'.'v,t

Polytropic Proce_- A polytropie

there is heat transfer. The analysis

erties can be defined by the equation

The work te.rm is

[2.2bbl

[2.27]

process is a general irreversible process in which

of this general process requires only that the prop-

Pt," = constant [2.28b]

Then. where n is a constant, it follows, as in the isentropic process, that

and

___x 1)1 \n-1

The fir._t law for a closed system undergoing a po|_tropic proeess may be written

' u f/P d_,(2_= _-u,+ d

Utilizing the perfect-gas relation

Pc,

J

Pv" = constant

kR

the fore_oipg relation becomes
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_4PPLIC.4TIONOF PROPERTIES OF GqSES

,Q, =J1 (n. -! 1 k -1_i)IP,v,. -P.,v.,_.. [2.31bl

From an intermediate step in the derivation of equation (2.31), the reversible work term may
be shown to be

1
,wk_ = _ (Px vi - P._,v2) [2.33a1

twkz={n-_(TI-Tz_=nR_Ttlfl-T'z]--" - \ T,] [2.3361

Table 13.3 summarizes the equation applicable to each of the perfect-gas processes discussed.

REAL GAS

Equ_iotvs of State

The perfect-gas equation of state predicts the ideal relationship of any gas over the full

range of temperature and pressure. It is an experimental fact, however, that at high pres-
sures or high temperatures or in regions near the point of condensation of the liquid phase,

variations from this ideal relationship de occur. The magnitude of these deviations depends

on the particular _as and the values of the temperature and pressure. As pressure is in-

creased from zero pressure, the deviation from the perfect-gas law increases. Also. the

deviation at a given pressure will be less at higher temperatures, except when temperature
is so extreme as to cause ionization or dissociation.

Numerous equations of state have been proposed that will, at least in part. compensate
for the deviation from perfect-gas behavior, among these are:

il) Van der Waals" equation:

where a and b are constants, characteristic of the particular gas.

{2) Bertheiot's equation:

/

Pv,, = AT _ 1 +

where tY and b' are const3n|s.

(3) Dieterici's equalion:

p = ( R--_T,,] e-.,"'nr,,,,
\v,.- b '/
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w_ere a" and b" are constJnt..,.

(4) _/,_h]'_ equation:

RT a'" r"'

v,, -b" v,,(v.,--b'") _,

where a'". b". and c"' are constants.

t5) Keyes' equation:

RT e
P=

v,. - a t v,,.g) z
ot = Be-_/,',,,

where B, k, e, and g are constants.

(6) Beattie-Bridgeman's equation:

-
where A, B, D, E, and F are constants.

In all these equations, t',, refers to the molal specific volume. Their accuracy in correlat-

ing experimental data depeads, in general, on the number of constants (listed beneath each

equati.m) that may b," assigned specific values for each gas. The Beattie-Bridgeman equation

of state with five such constants has been found to agree within a fraction of I percent with

exp,-rimental data h_r a number of substances over a wide range of conditions. The Beattie-

Bridgeman equation is complex, but it is exceedingly useful if the constants for the gas

inw_lved are known for the range ot interest. B.F. Dodge's text on Chemical Engineering

Thermodynamics (1944) has a tabulation ,,f Beattie-Bridgeman constants for a number of gases.

The Van der Waals equation may be expected to _ve better results than the perfect-gas

law. H,wever. it has only two arbitrary constants and cannot be expected to duplicate

experimental data exactly, and it may be seriously in error under certain severe conditions.

The equations of Berthelot. Dieterici. Wohi. aJ:zl Keyes generally are not as accurate as

the Beattie-Bridgeman equation but. owing to their simplicity and form. may be useful for

specific types of calculatio,_s.

If it is desired to fit exper.:mental data with gear accuracy over large pressure ranges.

the tk_llowing equation k.qown as the virial form of an equation of state is rec,mmended be-
cause of its flexibility

r+_3Pv,,= RT'+B-+ _,.,.
Vm L, tt_ _ In

where the coefficients B, r. and 8 are temperature functions as tblh,ws

RC
B = R TBo --t o -- --

T z

RB,_
r = RTBob + aAo-

T'_

RB,,bc
T'_
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This _,irial equati_,n is really a condense,t summary ,d"the data. It requires a diff,'rent set _,t"

eoelfficients |',_r ear|l temperature, and it |JeconleS very t'umbers._me f0,r practical applicatitm.

I_w of Cm_nding States

There is yet Sheather met|,;d _,t' coping with real-gas deviation from perfect-gas behavior.

This method is based ,_r° the law _l" corresponding states. The deviati,n of the _,lume ,,f

real gases from that predicted by the peel.cot-gas law can be simply represented by plotting

the rati_ of the actual volume to that predicted by the perfect-gas law versus the. pressure, or
in other words.

.t, = Pv = Z = compressibility factor
RT RT -

P

is plotted as the ordinate, and pressure as the abscissa, for lines of constant temperature.

The law of corresponding states provides an avenue to a methanol of determining the com-

pressibility factor Z in a generalized form applicable to all gases.

It was stated previously that the extent of deviation from perfect-gas behavior increased

as the region of condensation was approached. The law of corresponding states postulates

that all gases have the same P--w-T behavior at the same reduced conditions. Hence, the

behavior of all gases is correlated, not by using actual temperature and pressure but by using

ratios of those values to the temperature and pressure at the critical point. In other words.

the deviation of two gases may be very different at the same temperature and pressure, but

may be the same if considered at the same temperature and pressure relative to the region
of condensation.

The critical temperature and pressure are used as characteristics of the region of conden-

sation. Thus, the ratio T/T, is commonly called the reduced temperature (T_), and similarly

P/Pc is the reduced pressure (P_).
This method of correlating P-v-T data has been found to be of considerable va_ue,

especially in those cases where the available information is insufficient to evaluate the co_:-

stants in an equation of state such as the Beattie-Bridgeman equmion. The accuracy of the

generalized charts, such as those shown in figure 13.3, depends on the type ot gas and the

pressure and temperature. Dodge has made a rather comprehensive comparison of the
charts with actual data. His results indicate a maximum deviation of 15 percent and an

average deviation of about 2 percent for 263 individual cases covering a wide range of pressure

and temperature and 18 different gases. Table 13.4 (from German and Danielst shows the

value of compressibility factor chart {frequently referred to as "Hougen and Watson chart").

TABLE 13.4.-- Comparison of Compressibility Factors

Pv/RT for nitr_gen at 1000 arm

I

0 ......................................................... I 2"06321 1.0000 ! 2.426 0.731

Hougen and
Watson chart

2.10
1,95

263
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Reduced Pressure, Pr

Compressibility factor for gases. [Courtesy of the .4merican Society of Mechanical Engineers.]
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Also. the volume equation may be written a.s

in the for_toing two equations. /? is known from the statemea! of the probhm, and

wt, h,n, and ut may be evalumed as follows. To evaluate W,. the real-gas trial!on in u_d

p,f'= W,Z,RT,

From the statement 0f th*. problem, Pl = 100 psia and T_ = 70° F, an shown in figure C.2

(app. C) at the given temperature and pressure, Z, is read as

Therefore

Z_ _ l

(100} (144) (10.66)
( 1 ) (55.2) (-_() + 70)

= 5.24 Ibm

The enthalpy h,, eat) be read direcdy as hi_ = 160 Btu/ll:m from ligure C.I (app. C) by entering

the chart at P= 750 psia and T= 0 ° F. The internal energy ,_ can be |band by reading the

enthalpy at P = 100 t_sia and T= 70 ° F.,

then from the definiti-n of enthalpy

O1", _in('e

it follows that

h = 183.5 Btu/lbm

Ply!

./

Pv = ZRT

Z_RT_

g

Reading Z=- 1 from figure C.2 (app. C), the following relations are obtained

27O
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t I ) (55.2) _530)
u, = I_1.5 -- 788 = ! Ik, Btu/Ibnt

.'4ubstihllltt_ th," value_ ,d J'. ff _. u,..,n,l h.. inh, tite ,,,,nlain,.d nla._s and v._lulne equ.ltions

XI_,,

I_J-_ i1_)
73. ;

,,r u_.==164)....

N/o_ there are two equations anti thret, unknowns, and if there is no simple relation between

any two of these properties h,r the real gas, a trial-aml-em_r sMution must I_. used.

A perfect-gas relationship is found to produce a very gm_l approximation that yields a
direct s4dution. Sim'e

du = c, dT

and since the data _ff figure C.4 (app. C) indivate a ve_ nearly cmmtant value of cr:=0.179

Btullbm over the expected range of temperature and pressure, the following equation can

be u._wd with accuracy

u_.= ", + c_( T-;-r,)

= 146+0.179(T._ --530)

The previ, ms equation can be written in terms of T._ also by substituting the perfect-gas law

solved h,r if':

73.t
u2 = 160--

(7.50) (144) (10.6.5)

(1) (55.2) iT,)

Equating this equation with the approximate equation for u= above permit_ a direct solution

|or 1"., yielding

7"==596 ° R

=136 ° F

The final mass of gas in the tank is obtained by writing the perfect-gas law once again, in-

_duding Z = 1.0.

(7,50)(144)(10.65)

( 1) (55.2) (596)

= 3,5.0 Ibm

By comparison of these results with that of example problem 13.1. the real-gas effects in this

problem caused a lower final temperature and a slightly greater final stored mass.
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CHAPTER 14

APPUCATION OF FUNDAMENTALS OF INCOMPRESSIBLE FLOW
ulu

Th r term "fluid" is applied to substance,_ which, by the nature of their internal structure.

offer comparatively litde resistance to a chan_e in form. Incompressible fluids, however,

offer greta resistance to volume chang.

No fluid is capable of any imernal adjustment which will enable it to maintain equilibrium

st rest while subjected to a shear stress. If a shearin_ force is applied to any fluid, the tluid

will continue to deform am long as the force is applied. There will invariably he some move-

ment in which the velocity is proportional to the applied shear stress. The relation h_etween

force and vek_city depends on. among other things, that property or fluids known as viscosity.

An ideal or perfect fluid is merely one which, fi_r purp-_es of developing theory or making

a mathematical densonstration, is conveniently assumed to be nonviscous or incompressible,

or both. Such fluids do not exist, and theory based on such assumption is subject in its

application to correction fur the effect of these physical properties that have been neglected.
In this chapter o,ly incompressible fluids are considered. The effect of work and heat

additi.n -r removal are neglected. In an incompressible fluid an increase in pressure will

nut cause an increase in density. The assumpti-n that liquids are incompressible does not

usually introduce an appreciable error. The assumption that gases are incompressible, for

flows below a math number of 0.2, introduces -nly very slight error. Beyond this point

aases sh,uld be treated as compressible fluids.

MASS DENSITY AND SPECIFIC WEIGHT

"Mass density" is defined as the mass of a substance per unit volume. Specific weight

is the gravitational fi_rce per unit volume exerted by the mass subjected to a given acceleration

as a result of gravity, in this chapter units for density are slugs per cubic toot or pounds

mass per cubic fiJ9t, and specific weight has units of pounds force per cubic foot. The rela-
tion between these quantities is determined fr_m N.,',:-,t,,n's first !:,w written ;. lerm_ af

gravity.

F_t = mg [3.1 al
or

If both sides of equations {3.1a) and (3.1b) are divided by the total volume/?, it follows that
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V V ) g - mg_ Pg [3.2_g,, K

in this system, the units of g,. must have the units ,ff Ibm/slug ,_r lbm-t't/lbf-sec 2. Using

equation _3.2). the following definitions can be made

Mass density =P=v slugs/ft :_or lbf-secz/ft 4 [3.3a]

_t

Weight density = y-:.-_ lbm/fi a [3.3b]

Specific weight = y' = Fwt lbf/fi3 [3.3c]
V

Rewriting equation (3.2) in terms of the above three definitions, the following relationships
are obtained

",,= og_ [3.4a1
and

VISCOSITY OF FLUIDS

Viscosity is the property of a substance by which it offers resistance to shearing stresses.

In a Newtonian fluid the viscosity is in linear proportion t9 the ability of the fluid to resist
such shearing stresses.

All fluids, both liquids and gases, have viscosity. The viscosity of a liquid decreases

with an increase in temperature, whereas the viscosity of a gas increases with temperature.
A shearing fl_rce appbed to a visc_ms material causes an unlimited and omtinuous

deflwmation of the material. The rate of deformation or shear bec,,mes a measure .f the

viscosity of a fluid.

In omsidering the efl'ect of viscosity on fluid flow, it is necessary to intr,,duce two funda-

mental assumptions which bee,role the basis fiw the theory and applicalion ,ff viscosi:v
These assumptions are

t]_ There is no relative motion between a solid boundary and the layer ,f fluid in c,mtact
_ith it.

!?_ The shearing stress between layer._ of fluid, of infinitesimal thickness, is proportional
to the rate of angular deformation of the fluid tNewt.nian fluidst.

For a Newtonian timid, the shear stress is given by

dV
r= #- (-_v) [3.5l

where p. is a coefficient of proportionality ('ailed the abs.lute viscosity or coefficient ,,f
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visrosity. ,Xls,,. v is the distan('e tnea_.urement front the bounding surfa('e measured normal

t,, tit(" flow dirertion.

In tht- E_)glish system ,>f units, equath,n _3.5) requires thai the units -f vis(',,sity be

Ibf-se+,/i't _

+'tn alternate f, rm ,/ expressin_ vis(-,,sitv ,,f liquids is the kinematic visr.sily which is

d+ffined by the etluati,m

v = g- = g-"'-- ::/z__' 13.61
P T

Fr ..... equati,,n +3.61, it f,_llows that the milts for kinemalir viscosity in the English

system are [t:/see. %'iscosity units for other systems of units are shown in table 14.1.

Plots of visrosity versus temperature are presented in the appendixes for several liquids

and fi)r gases at low pressures. In the high-pressure regions, pressure effects on viscosity

"FABLE 1¢.1.- Equivalents of l/_sco.+ity

Equivalenls of Absolute Viscosit

Abe>lute or dynamic viscosity Centipoise Poise

g

cm _e(

Muh

dyne s_ ,_to _,btaJn (.m 2

1 T ,.)

slugs

ft S_C

IM st'('

ft_

(M"

Ibm

fi sec

poundal sec

ft 2

(p)

(/.d_ 47 _)41

1487

4 iq

14.87
1
- or 0.0311
g

-r 32.2

,dugs

ft _ec

Ibf sec

ft:

Ibm

ft _'C

poundal sec

ft _

(/.t)
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TABLE 14.1. -- Equi,Jalents of I'iscosity-- Continued

Equivalents of Kinematic Viscosity

Kinematic viscosit _, Centistokes

Mult
I

1
Centistokes

Stokes

eta t

ft_

_C

to obtain

(v)

(lO0 v)

(v')

L

lO0

929O0

Stokes

cm z

sec

(100 v)

3

O.Ol

929

ft 2

(fl,/)

1 076( 10 -s)

1.076( 10 -s )

may be appreciable. Hence, viscosity based on temperature considerations only may lead

to significant error. This subject, however, will be considered in chapter 15.

CONTINUITY EQUATION

Since. by definition, no fluid can enter or leave a stream tt, be across the walls, i', is pos-

sible to write an equation expressint_ the continuity of flow along a stream tube. TLe volume

of fluid passing the station having area,4 in figure 14.1 in the time interval dt is//ds. The

mass of the fluid is {3,A ds), so that the mass rate of flow is

dt

since ds/dt = V, the nominal velocity of flow at A.

L
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If we let w represent mass fi,_w per unit time. tile law q,t' ,..nscrvation °,f mass requires

that. for a steady flow. u in a stream tube is a constani. ,_r

u'= y_.41V_ : _':, lel'e :T - at+ 13.81

since there can be no aceurr, ulati_m between stations in steady fl,w.

In incompressible fluid fl.w, wilere pressure vhanges d- not t'ause changes

density, the continuity equati.n can be written simply as

In lllitSS

/&"

--=e'liVi =-l,.,I'., =+4V= constant [3.91
Y

BERNOULU EC,/UATION

To obtain an equation for constant energy frictionless flow, consider the differential

length of the stream tube shown in figure 14.2. Flow is caused in this stream tube by the

difference in pressure acting along the stream tube axis.

I
! 2

Figure 14.2. F,,r, es avtin_: -n a strvam-tube ,qc-

IIICIII ill Y:|e3t] _" t|OX+,+

If the axial furces along, the axis of the stream tube arc summed, it folh_v_s from Newh,n'._
..ec,,nd la'_. _F= incr. ;hat

d/' )P4+ P+y L4+dl-.4)-(.4+d/l)(P+dPt-mg sinO=mt_

Neglecting all ,+anishingly sn;all products of differentials ar:d substituting

yields

325-994 0 69 19

( )dV _ dlt ?) and sin 0 =--
c_= -_- =' _ d,, +Is

/Tt

4 dP ds+ mg d:+s d(V : 0
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This Is an energy reiation which states that, in a frictionless system work done by a force
fin this case. the flwce due to the differing pressures acting on tile stream tube elementsl

is balanced by equivalent changes in pot. ntial energy _m_. dzt and kinetic energy |m d(t'" )/2]
of the mass acted on.

By assuming tile flow to b'. m:'ompressible, there will be l_,_expausion work. so "hat by

substitut;ng the continuity equation _t,,l -onverting the mass units to the gravitational system

(g,.) d(t"_ ) 0 I& 10]
l_'_.g/ dP+dz4 '_.,, -

which integrates, at constant specific vol'._me, to yield

and

P V z

_-7+ z + _g= constant

+ z + _ = constant

ft [3.11a}

ft-lbf/lbm [3.11 b

This is the familiar Ber_oulli equation for steady, frictionless, incompressible flow {in terms

of fluid head) a_.:i energ', per unit mass flowing, respectively.

MOMEI_M EQUATION

Newton's second law states that the resultant force applied to a free body can be equated

to the rate of change of momentum of the body. Then in terms of the vector quantities

_F =d !m¥) [3.12a1

or in _he impulse-momentum form

ZF dt= d(mV) [3.12b]

The continuity equation can be substituted into equation (3.12a) and applied to two stations
in a flow section where the veh,city is constant, yielding

EF = m,V._, - m_V_

= ,p.,_A.,_V_)- (p,A,V_ t [3.13a]

(The above equation is a modified version of that appearing in oh. 3.) Also, since continuity
requires that the mass flow rate be the same at both stations (see eq. (3.13b))

_F = m(V_- V, )

w
=-- (V_- V,)

gc [3.13b]

tThe above equation is a modified version of that appearing in eh. 33 This meth,_d ,,f deter-

mining resultant forces on nozzles, piping systems, turbine bi=:dc.-_, and so forth, offers the

_eat advantage of evaluating only the inlet at,_4 outlet flow conditions and direction, rather

278

.!



APPLIC.4TION OF FUNDAMENT.4LS OF INCOMPRESSIBLE FLOW

than a complicated investigation and integration of pressure distributions within the flow
section of interest.

REYNOLDS NUMBER

The flow and heat-transfer behavior of fluids can often be conveniently described or

categorized by dimensionless parameters. One of the more widely used of these parameters

is the Reynolds number. The Reynolds number can be rationally derived fr,,m dimensional

analysis and has as its defining equation

R_ = FL____pp [3.14a}
g

For the circular cross section, the length dimension is the diameter so that equation
{3.14a) becomes

r_ = FOp [3.14b]

The physical significance of the Reynolds number is that it represents the relative
magnitude of the inertial to viscous forces acti,_g in the fluid stream. This ratio, in turn,

has a definite effect on such factors as heat-transfer coefficients and the coefficient of viscous

friction. It is also possible to describe types of flow in terms of the Reynolds number.

For low Reynolds numbers, the viscous forces predominate and the flow is termed viscous

flow, or laminar flow. The Reynolds number for laminar flow is generally 2000 or less. The

upper limit tbr laminar flow, however, is subject to some extent to vibrational effects and

perturbations in the flow stream. In laminar pipe flow. the velocity profile at a given section

plots as a parabola with a velocity of zero at the pipe wall and a maximum velocity at the

centerline. For Reynolds numbers of 4000 and alu)ve, the flow is governed by inertial

forces, and the velocity profile is no longer parabolic. The velocity profile has a tendency to

become blunt and almost a straight line across the entire pipe cross secti,m.

Between Reynolds numbers of 2000 and 40(,_. the flow is termed transitional flow.
in this region the flow can be either laminar or turbulent. ,,r mixed. Above about 2100. if

the system is disturbed or if there are any irregularities, the ib,w will change from laminar to

turbulent. In general, when the Reynolds number is above ?000. the flow is considered

turbulent to some degree.
HYDRAUUC RADIUS

The major part of all piping in flow systems is of round cross section, but in some in-

stances this is not the case. Therefore. it is necessary to develop an equivalent diameter

b_r these noncircular pipes. The equivalent diameter is used primacily for computing the

Reynolds number and is kn,_wn as the hydraulic diameter. This hydraulic diameter of any

cross se,qion is defined as t'mlr times the hydraulic radius, defined, in turn, as

cross-sectional area D
_h

wetted perimeter of cross section -4
[3.15a]

Then, by definition, the hydraulic diameter can be expressed as

[3.15b1
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FLOW OF FLUIDS IN PIPES

The axial velocity of fluid flowing in a pipe is dependent on the axial h)rces acting on the

fluid, the predominant ones being that of differential pressure, viscous friction at the wall.

and acceleration and gravity fl)rces. Although The Bernoulli equation was developed fi)r the

idealized stream tube, it also applies to flow in pipes when an accounting for frictional pressure

loss is included. The effects of friction are detected as reductions in the constant of equa-

tions {3.11al and t3.11b) at successive downstream locations.

Multiplying equation (3.1 lb) through by the weight density 3' yields the Berm}nlli equation

in tert_s of pressure, or
[ _l ,,

P + gpz + _-_) pV" = P, lbHft 2 [3.16]

Here, Pt is the constant, in terms of the total of all the pressure components. The

effect of friction is an observed reduction in the total pressure of the stream as the fluid

progresses down the pipe. In incompressible flow the terms of elevational pressure and

dynamic pressure are independent of the frictional effects. More specifically, the effect

of friction in any given pipe section is unaffected by its orientation and any resulting eleva-

tional pressure changes. Also, the dynamic pressure is an absolute quantity dependent

only on the density and velocity as fixed by the continuity equation. Then the only term

that can reflect a reduction in the total pressure is the static-pressure term P. The inter-

change of pressures and the loss in total pressure may be better understood by study of a

pressure diagram such as figure 14.3, drawn for a typical section in a pipehne.

Certain features of the pressure diagram should be noted and reflected to the governing

Bernoulli equation {eq. {3.16)).
(l) The elevational head pressure line becomes zero at the point where the pipe centerline

intersects the horizontal elevational datum plane. This line is straight only because the pipe

centerline was drawn straight.

{2; The dynamic pressure term is constant in the constant flow area sections, since

c(,:_{inuity requires constant vel,'_city for incompre.,,:_ihle flow with constant area.

(3) The _otal pressure loss is a resuh of viscous friction alone in the const_t area
sections. In the variable area section, :he loss is a result of additional turbulence and

possibly boundary-layer separation, as well as [dction. In such a diffuser section the total

pressure loss and the static pressure recovery are greatly dependent on design.

(4) It should be especially noted that even though there may be a significant loss in

total pressure across a diffuser section as shown, and also with a sudden expansion, there may

be a net increase in static pressure due to the recovery of dynamic pressure.

An evaluation of the frictional pressure losses can be made by considering the flow in

a horizontal constant area pipe Since the dynamic and elevational terms are constant,

the changes in total pressure between upstream and downstream points is just the change

in static pressure, or

P,I -- Pa = PI -- P"

In the absence of momentum change in incompressible flow, the static-pressure forces

a,:ting on a fluid element can be equated directly to the viscous shear forces at the pipe

wall. resulting in
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- ae= C -g-j
which can be integra',ed to produce

i3.17/

I3.181

(The above equation is a modified _ersi_m of that appearing in oh. 3.) Equation (3.18i is the

basis for computing pressure losses as a result of friction for turbulent incompressible flow
in pipes and requires an evaluation of the friction factor which is discussed in detail in the
next section.

n

n

Arbitrary Horizontal Datum Plane T t

r_r/_._TZ/I/, zI////I/zz/i/r/r//_"_;r//l'I r//_ I /
t i I I I
I I I I I

I [ I _ ,2py _ I

P P

gpz I
t I _

Horizontal Distance

Figure 14.3. Pipeli1_e section.
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For tile case of completely laminar flow (R,. < 2000L the exact expres_km fi,r frictiona

pressure loss is the Hagen-Poiseuille e,tuation

_t, 32p.L V
ms;. = D2 13.191

where it is seen that the pressure loss is a linear function ot velocity, rather thaa the usual

square law. Substituting tile definition of the Reynolds number yiehts

l' z 64
[3.20}

F&CTOA

Equation 13.20) represents the loss in pressure as a result of viscous friction.

equation the value of the friction factor is ,given by

In this

f=64 Re< '2001}
Re

which holds for viscous, or laminar, flow only. In turbulent flow, the above relation for f

does not hold, and the friction factor must be determined in a manner so that equation !3.18)

correctly yields the pressure loss. In turbulent flow,f is fgund to be defined by a more com-

plex function of the Reynolds number and certain characteristics of the wall roughness.

L. F. M_rody has constructed one of the most convenient charts for determining t_ction

factors in clean, commercial pipe. This chart, presented in figure 14.4, is the basis for

determining the friction factor for all ranges of R,,. both laminar arid turbulent, accounting

for wall roughness.

PRESSURE LOSSES IN PIPING SYSTEMS

Sudden Enlargement in Cross-Sectional Area

The presst_re drop caused by a sudden area increase can be found by determining the

forces acting on a system in the vicinity of the area change. In figure 14.5, the pressure

upstream of the area change is Pt and that downstream is P,.

At section 1. just downstream of the area change, the pressure is still equal to P, due
to insufficient distance for significant pressure drop to occur. At this section the force

acting to the right is equal to Pt.4.,_. Farther downstream, the pressure has dropped to

P2. and at sectt,n 2 the force acting to the left is equal to P2,42. The total force acting ,m

the section between l and 2 is equated to the momentum change to yield

( t'i - P..,) = _47,.( l'._,- Vt) = p_2( t'2 -- I", )
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2

Figure 11.5. Sudden area increase.

Substituting this into the Bernoulli equation (3.16k writing between l_ints 1 and 2 in terms

_,f the total pressure loss, and clearing yield

V2 - 1 ., V"
APa. = ( 1 " 1 [3.221

(The above equation is a modified _ersion of that appearingiu oh. 3.;

loss factor for sudden expansion is

(1-g/

Then the total pressure

For a steady incompressible flow there is no change in weight flow rate or density ahmg

:he path. Hence. the velocities l"_ and I': are a function of flow area only. and the above

relation may be written as

(The ab.ve equati.n is a modified verst-, -f that appearing in oh. 3.+ The h+ value fl,r a

sl,_]dt.n expansi,m as defined by equati, m 13.21-_ is plotted ver,;us the ratio ,_f upstream Io

dowusl.,-eam pipe dia|neter in figure 1 16. Als-. shown in this figure is a pl,t for the sudden
c,mtraeti,.i in the fl,,w stream. The sec,,nd cur_e, ho_,:_er, cannot he determined by

analytical means and is fr.m experimental data. Note that the K, factor plotted in figure
1-1..6 is based on lhe d,,namic p:'essure in the smaller diameter pipe. This can be seen by

observing that the defining equation fi,r/_t <eq. (?,.22)! is based on the vel-city I:,. If it is
desired to convert the published Kr factor so zs to i,e used with the dynamic pressure in the

larger diarneler pipe. the new factor must be detined as

.xP,, = K;(½pt,'+ ) 13.251

and It e relation between the two factors is then. by an analysis similar to the' 6)regoing.

K,'=K,\_/ =K, _ , I3.261
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1

Resistance of Bends

The resistance of bends to fl.w of an incompressible fluid can be attributed to viscous

friction, secondary flow. and increased turbulence. The total pressure l.ss is found to vary

in prop-rtion to the local dynamic pressure, as with pipe fric|i_'n_ Then for bends

The bend loss coefficient is most accurately considered as that of equivalen! lengths ,ff straight

pipe. having two parts as fi)llows:
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The first term is that part of the l,_,_sfaet_gr resulting from viscous friction and should be com-

puted as pipe friction loss for the centerline hend length L_,. as a t'uneti_n ,,f R,, and e/D usin_
the Moody diagram. The second term is the resuh ,4 the induced turbulent,-, and ,_econdarv

flow and is largely unaffected by changes in R_. The equivaleut length (I.,./l)) is taken a-;

bend resistance from the empirical data ,f figure 14.7 as a functi, m _,f bend radius, andJ_,_ is

taken from the M,,_dy diagram i_ the higl'test range ,,f R,. dully turbulent fl,w! and the perti-

nent value of t;D. Figure 1:1..8 presents ,i_nilar approximate data for the total resistance

equivalent h'ngth of miter bends, to whi,:hf,,r sh_.,uld be applied.

Ahhough a 180° bend loss is mJt equal to that .f tw,, 91)° bends, that assumption can be

made to approximate conservatively pressure losses.

Entrance and Exit Losses

Since there is no pipe frictional length involved with entrances and exits, the total pres-

sure loss factors are dependent solely on the configuration of the entrance or exit. Once

again, the pressure loss is proportional to the local dynamic pressure in the pipe and a loss
factor so that

ae,, = tc (½ov") =  i-4

Empirical values of K, for various configurations are presented as figure 14.9. The reader

is reminded that the static-pressure changes across an entrance or exit must be evaluated

with a consideration of the changes in dynamic pressure per equation (3.16). written for the

upstream and downstream I_fints. and solved for P_ -P.,. Then

/_P,.= P, - P.,-= P,, - Pr.,- __p(v_ - V_)

= t_, (½#V')- ½p(r'_ - t'_

where //is either 1,'_ or/:_, whichever is the velocity in the adjacent pipe.

Then. for example, the equaliorl predicts that f_br an entrance from a large reserv, fir.

the static-pressure loss is the numerical sum of the t_ta! pressure loss and the dynan;ic
pre,_sure inside the pipe (l = l'_ and ll =- 0).

Likewise. the static-pressure [,;ss acr,ss an exit inh_ a large reserwfir is zer{_ (1'= l._.
V., = O. and K, = 1 ).

Valves and Fittings

The total pressure-loss c_befficients for standard fittings and _,alves installed in pip,_lines

are dependent on the internal c-nfiguration. Only insignificant variation occurs _ith change_

in tet,,perature and pressure .f the component and the Reynolds number of flow when

fully turbulent. Significant changes can ,ecur in the pressure-l.ss coe_t'ient f_,r valves

in the laminar fl,_: conditi_m, as in the case .f fricti_mal pipe flow. Typical _alues of Kr

fi_r turbulent flow through valves and fittings were taken from a number ,4 sources, and are

presented in tables 14.2 and 14.3. The wide variation in the tabulated values for a given

component indicates the poor accuracy _hh which valve loss fact_,rs can be specified in a

general manner. Greater aceuracv requires testing .f the individual e,m_nent.
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._'igure 14.7. Re_istan(._ ,_|" bend,,. [(:oltrte.,_) (_[ (.'r, toe Co.. rel*r,)d,ce,t /?om Ter'h. P,tper

Vo. 410. Fhm" o(Fluid._. ]

p

The equivalent lengths sh.wn in table 14.4 are based on the pipe size fi)r which the

coml_ment was designed. It has been shown by lest that the pressure-drop variations

as a result of mating the c(_mp(ment t_. different schedules .f the same nomiaal pipe size are

small within reasonable limits. Ho_,'eve-. fi_r calculation purposes, if the pipe size is altered.

the value t_f L/D f_r the valve must als(_ be ahered. Since pressure dr{)p varies as the
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llO, Flow of Fluids.]

secolid l_,:,wer of the velocity, which varies as the second power of the diameter, the relation

between tl;e tw.9 L/D values is

L L D "

D = (D)std (D'std) [3.27}

Divergent Branches

The loss in pressure througlh divergent branches depends on _he split in mass flow rate,

the flow areas inw)lved, and the branch angle. The empirical total pressure-loss factors for

divergent branches are presented as fi;:ure 14.10. Using the nomenclature of the figure, the

_.otal pressure loss between locatk, ns 1 and 2 is
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Fitmre 14.9.

COMPRESS_;r_G.4S HANDBCKPK

L_ L
T r-- C-

Kt -0.78 Kt-0.50 KtffiO.23

Inward Sharp- Slightly
Prniecting Edged Rounded

Pil_ Entrance Entrance
Entrance

__£ __J __J
-1" --1 --_

Kt= 1.0 Kt:, 1.0 Kt:,l.0

Proiectiag Sharp- Rouded
Pipe Edged Exit
Exit Exit

f---
Kt - 0.04

Well
Rounde,J

Entrance

Loss because of sudden entrance and exit. [Courtesy of Cra.._eCo., reprodttced/rom

Tech. Paper No, MO. Flcwz.of Fluids.}

[3.28}

Convergent Branches

For the case of convergent branches. _,ie pressure*|oss factors must be computed by

means of the equation

[3.29j

Each of the variables and groups of variables can be read directly from figure 1_/..11 or can be

computed :lirectly, and once again, the total pressure loss between points 1 and 3 is

A_tL=lKt 3 (1 . _ iKt:! I3.3o1

OVERALL LOSS FACTORS

Lines in Series

If pipes of different sizes are connected in series as shown in figure 14.12, an overall

total pressure-loss coefficient for the system can be derived. Adding the total pressure losses

due to both friction and area changes in the circuit yields
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T _.BI,E 14.3.-- Equivalent Length el" Fitt.ia_._

t
Fitttns: _ ......

EIN_ws:

90 °..................................... . 1.6
_k_°. .................................... .. I.I

q0 ° long _weep ....................... 8

Tee_:

!00% _ide diversion ..............

50% side diversion .................

33% side diversion ................

25% _ide diversion .................

i,/a@ve$:

Globe fully open ......................

G_te fully open .......................
Step .... k _',l;y c;--',, .......................

Jingle fully open ...........................

Reducer coupling .........................

2.8

6.3
14.3

25.0

18.7

.8

1.6
3.{_

.6

Iron pipe, in. C,,pper tube. in.

.........!.....T......T......r .....i ..........................._.......
I i I% i Itii i 2 ' ,I _ 3/; I It'i I1_._ ! 2

' i....... ; ...... n- ............................. _ ......

t_.5 1.6
_t.5 I.I

3.0 .8

r

13.0 1.9
25.0 6.3

I00.0 3_ .2

66.0

3.0

6.5

12.5

2.5

t )

2.1) 2.6i 3.1 _ ;2

1.0 1.3_ i,6 : 2.1
t

3.8 _.7 5.6 7 5

t20_i 12.5 16.718.7 ] 28.1 37.5

33.3 t 4.1.6 1 49.8 66.7

. 31 4.2

4 2 I 6.2 83
]>I i.ol i.._ t.:

2.1 2.6
1.5 I !i

I tO Il,ll I ._

I

:l. I ) i.2

2.2 } 2.9
2.1

I

23.5 ;._.4 35.2

11.6 52.0l 62.5

20.6 35.4 _ 44.2
I.I 1.5 ( i.8
1.6 __I I 0.6

1.? _.;<li 7.8

i.......

5.0

16.7

46.9

83A

53.0 70.8
2.2 2.0

3. I 4.2

9_ 12.51.1'

..._..,
• #, - I

Then. in gene.rai terms, the overall coefficient for t,.tal pressure loss based on the dynamic

pressure Lq section 1 of the pipe is

_,,.=t:,,,= E' t._ :_,_,+ ttJ,_'

Here, s indicates the smaller of the two pipe_ at the sudden area change, and K, is read from

figure 14.12. Other types of fittings and valves can be included in the overall coefficient in

the same manner, by including the diameter ratio factor when the device is of a different size

than the rei_rence size.

Unes in P_mllel

i

In the case of series lines above, the loss in t{_tal pressure filr the system was fi)und to be

ihe sum of the losses m the separate parts. In the case of parallel lines connected into com-

mon reservoirs on b,lth ends, as in figure 14.13. the loss in total pressure is equal in all the

lines:

292

#



> !

"s

B

IPPI.IC _rlo_'._ OF F! %'L_(SlE_T II.._ OF I_'UOffP!CESMBI.E b'l.l)ff

"l'_81.E I_.-L-Equivalent [.en%th _H Vtdre_ and Fittin,.z_

Pipe 4ize. in.

t/,l, ..........................................

Equiva|en! length, tee_

Standard S;,|e outlet (;ate valve
elbow tee fully open

1.3

(;h,bc valve

full,_ ,,pen
_,ngle valve
full_ ,pen

0.:3 1$

_i4............................................ 1.8 _, .4 18 I0

I..............................................2.2 5 .5 23 12

! V4........................................... 3.0 6 .6 29 15

IV2.......................................... 3.5 7 .8 34 18

2 ............................................. 4.3 8 1,0 -16 22

2tit .......................................... 5.0 ! l I. ! .54 27

3 ............................................ 6.5 13 1.4 66 :_.

3tt2 .......................................... 8.0 15 1.6 80 40

.I.............................................. 9.0 18 1.9 9"2 k5

5 ............................................. 22

276 .............................................

ll.O 2.2

2.813.0

112

!,'16

56

67

8 ............................................ 17.0 35 3.7 180 02

10 .............................................21.0 45 4.6 230 112

12 ............................................. 27.0 53 5.5 270 132

6330.0 310 1526.414 .............................................

then

....
,Also. the total mass flow rate is the sum of tile flow rates in eaeh line so that

u't = u't + u'.z + u'_ + • • • + w, + • • •

It should be noted here that each of the parallel lines may be a complex serie,_ line having

fittings, valves, and different size pipes as discussed in the pr,:vious section. If _.. the

325-994 0 69--20 2_._
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F_jure 14.10. Divergent branch-loss coefficient. [Courtesy of the Society of Automotive Engineers.]

individual Kt factors mentioned here are the overall values for each series line Kto, as may

be obtained by means of equation (3.31).

Proceeding, the individual mass flow rates can be expressed by means of the pressure-

loss relationships above. Substituting and solving for mass flow rate in one line yield
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Figure 14.12. Lines in series. {Courtesy ot'the Society of ,4utomotive Engineer_.l

so that the total mass flow rate wt is

.' ,'f ,4 + 1- '4

The total flow rate can also be conveniently expressed as a ratio of the flow in some arbitrary

re!terence line, such as line 1. so that for N pipes

,,,, , _,_,,] [3.s31

Equation {3.32) can be written for line I, substituted into eqaatlon t3.3_L and solved for

AP,,,, as

[ I3.341

It is also convenient to define an overall, pressure-l._ss coe_cient ht the _:s,'lal terms and

involving quantities that are geaerally known. The most c-nvenient form is

[3.35!

where the ficti!ious total or overall velocity is defined as

, /AFt

and ,4t is the total flow area of all the lines. After combining and equating with equation

i3.34), the overall loss factor is found in terms of only the piping system description as

r ._" IDnVZ "1'2/. .l'
K,,,=K,, i" "V,,]" ,.__,[ 13.361
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Figur_ 14.13. Parallel lines.

whel'e

Then for a given total flow rate and the piping system description, the loss in total pressure
(which is also the lo,_s in stati(, presst*..'e between reservoirs in this case) {'an be computed

using equations (3.35) and (3.36). Likewise, when the pressure loss is known, equathm (3.35)

cati he solved explicitly for h_tal mass flow rate.

It should be noted that when all the parallel lines have identical values of D and Kt.

equalici-J f3.36) predicts an overall loss fach_r equal to each of the individual loss faet_rs.
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CHAPTER 15

APPUCATION OF COMPRESSIBLE FLOW

Compressible flow is characterized by variation in fluid density along the flow path. In

a compressible flow there are several parameters wh!,eh are most convenient in relating fluid

property changes along the flow path. These parameters are the speed of sound, the math

number, and the dimensionless flow parameter _b. In addition, the Reynolds number and

viscosity are also used in compressible flows in charat terizing flows and determining frictional

lengths of piping systems.

Also involved in compressible flows are effect, s wt,ich are the results of high pressure.

As will be illustrated herein, high pressure causes variation in viscosity and her, ce the

Reynolds number, as well as significant variation in pressure-drop flow rate relations, in

this chapter, the fundamental concepts of compressible flow are illustrated and also high-

pressure effects on fluids are explained.

VELOCITY, OF $OU_ID

The velocity of sound in a medium i,; simply the velocity of pr_pagation of a pressure

disturbance through the medium. For the perfect gas the velocity of sound may be expressed

simply in terms of system properties as

,-:: _ I+.51

Equation (4.5) _hews that the velocity of sound in a perfect gas is a function of tempera-

ture and the specific beat ratio only and is not affected by pressure.

For the real gas the simple expression ieq. (4.5)) does not hold and may lead to serious

error in calculating velocity of sound.

In regions of temperature and pressure where a real-gas effect is appreciable, the
more diificuh P-v-T relations must be used to determine the velocity of sound.

Because of the complex nature of the P_-T relations, a computer solution is _,ecessary,

a_d the data must be tabulated or plotted before computations can be made• Graphs of

velocity of sound for various gases in the regions where real-gas equations of state must

be used are given in the gas data appendixes tB through F).

If char_s for velocity of sound in a real gas are not available, it is possible to determine

approximate values fr,,m a Mollier diagram, or froro other thermodynamic charts. The

PRI_C[_DLN(} PAG_ BLANK NOT PILWT_W )
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method c,nsists of determining an expon,mt k,. which t_rces the :elation

P,,h'* = ('_mstant 15.61

to hold ahmg a constant entr.py path. The value of k_ thus determined is then suhstitmed

into the equation

c,, = ",/If_g,.ZRT I4.71

The quantity _._ is termed the isentropic exponent and is simply a function which de-

scribes the P-v relation in real-gas regions during an isentropie expansion or compression.

It is not a thermodynamic property and should not be associated with the specific heats, or

the specific heat ratio for the real gas.

Useful expressions for k_ can be found by writing equation t4.6) in logarithmic form and

differentiating to obtain

dP

Rearranging yields

if k_ is assumed to be constant, which is valid over a short interval between points 1 and 2,

equatbms {4.8) and _4.9) can be integrated to yield

t_= - [4.101

\'¢,/ \_'

Good appr,aximatc values can be obtained from poim,, read directly from accurate
thermodynamic charts using equa:ion !.t.10; if :he pressure change between points 1 and 2

is held sma_l.

_t must be pointed out that the accuracy of this method in predicting velocity of sound

is greatly dependet,t on the accuracy of the thermodynamic chart used and the care with

which data points are extracted.

EXAMPLE PROBLEM 4.1

Find the actual speed ofsottnd in gaseous nitrogen at a temperature of 0_ C and pressure
of 6000 psi.

SOLUTION

To solve this problem, use the equation

F""

c,, = V b,_zeZRT

30O
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To evaluate k._. assume a small isentrop;.,: process where the pressure changes from

6000 psi to some smaller value, say 5500 psi. Then

P P., 5500
--:=_= 0.917
P, 6000

k

From appendix C. figure C.1, a constant entropy process from 0° C and 6000 psi t408 atm}

to 5500 psi (374 arm) gives a temperature T-_,of -9 ° C.

From figure C.3,

Z, = 1.270 (6000 psi and 273 ° K)

Z2 = 1.224 15500 psi and 264 ° K)

Since

Pt P2

Tt =ZtRTI T2=Z2RT_

7.z=P*.Z, RT,=(5500)(I.270)(273)

T, P, Z2RT2 (6000)(1.224)(264)

Therefore.

Solving for c,.

in _ In0.917 --0.0866
k, = ...... 5.05

ln(Y_) 1n0.983 --0.0171

c,, = X/k,gcZRT = Vr(5.05) (32.2) (1.28) (55.2)(492)

,:',.,= 2378 ft/sec

The accuracy is dependent on the ability to read the charts and to round numbers.

MACH NUMBER

Flow characteristics in compressible flow have been found to vary as a function of the

ratio of the stream-flow velocity to the ,ok.city of sound. This ratio is tern__ed the "math

number'" and is defined hy the equation

M =-V [4.11]
c
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where

_f---- math number

V= flow velocity at a point in the flow stream

c= Sliced of sound in the media measured at the fluid conditions existing at the point
where V is m-_,asared

By consideration of the continuity equation, other convenient forms of the roach number
are

and if the gas is perfect,

Since for circular pipe

M-- (y]) 1c [4.12b]

A _rD2 /'¢r_ D ffi and P-_ 144p

equation (4.12b) may be written as

.M- 0.2245 _ ---

When the flow rate is known in terms of standard cubic feet per minute (scfm),

[4.12dl

( .SCFM '_ 'T
M= 15.21 \lO00 pD2 ] _ _-_ [&12e]

If flow is measured in cubic feet per second, the relation V=q/d results, and _he mach-

number expression becomes

q _q

M:=A_= A
c x/g&RT [¢.12f]

For real gases, the math number is determined from

q w

M=£___a_=a__
Ca Ca TOt

[¢.13a]

Using the real-gas equation of state, P='yZRT. the mach-number expression for a real gas
becomes

w fZRT_ 1

= _" _"_--J _" [4.13bl

3O2
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or when written for circular pipe and pressure in psia

\p _!

If the flow units are in scfm. the math-number expression beco_ies

(SCFM_ ZT 14.13d1
_lt = 86.4\ 1000 ] pD2c,,

In equat,.'on (4.13). the actual speed of sound can be found from chart._ of speed of sound for

the gas, or in the absence of such charts, c,, n.ay be determined from equation (4.7).

REYNOLDS NUMBEI

The Reynolds number was defined for circular pipes in chapter 3 by the equation

R, = v--O-e 13.1_!
/z

or from continuity

and for circular pipe

or from equation (4.14)

fl=w4(12) ?1

,_, jg= 15_28 ,_-=-6) t4.14,,i*

Often, flow rates are given in terms of v_)lumcl;Sc _]ow rate q and from the relation

w=31q

The Reynolds number may be written as

For the perfect gas

iYfl-_q_ i_.,,4t_l *
R_ =: 15.28 k_ D]

P P144

_'= k:,_= RT

*This equation is a variation_f equation 14.14_and does not appear in chapter 4.
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and the Reynolds number becomes

[ Pq, "_
R, = l 2s,  2Rrt, m t4.14c_*

or fiw flow in scfm, equation (10.3t (SCFM= 14.75 R/[/_ can be substituted to yield

SCFM h
,V, \iZYgs!Rt,' = 1.037  4.14d)*

VISCOSITY

Quantitative knowledge of viscosity is required in many engineering problems which

involve heat-transfer, mass-transfer, or pressure-loss relationships. In analysis of high-

pressure gas systems, experimental viscosity data are often not available for the gas in the

region of pressure and tem_rature under investigation. To provide these data, a generalized

method of estimating viscosity has been developed based on the critical viscosity of the gas.

Tp_I_LF. 15.1.-- Critical Viscosities of Gases

Go9

Air ...........................................

Ammonia ..................................

Argon ..................................... :.
Ethane ......................................
Helium ......................................

H_cdrogen..................................
Methane ..................................
Neon .......................................

Nitrogen ....................................

Oxygen ......................................
Propane ....................................

Critical viscosity, mieropoise

193

3OO

264

210
25.4
34._

159

1.56

180

250
228

At low pressure where the perfect-gas law is applicable, the viscosity of a gas is primarily

dependent on temperature and is little affected by pressure. However, as the pressure

greatly increases, the viscosity of the gas increases, though not nearly in proportion. If

the viscosity of severM gases is plotted in the low-pressure region versus reduced tempera-

ture, a family of curves results. If each curve is replotted as reduced viscosity (by dividing

all data by the individual viscosities at the respective critical points of the gases), all data

red,ace to a s:,ngle curve. From this curve, the low-pressure viscosi:y of any gas with known

critical temperature may be determined if only the viscosity is kn_:,wn at the critical point.

The same procedure can be repeated at a constant high value of reduced pressure, yielding

a single curve that describes the reduced viscosity of all gases at that respective reduced

pressure. By this means, it _ possible to combine the low-pressure generalized viscosity

curve with similar dimensionless ct_rrelations for high pressurt:s, thereby expressing high.-

pressure effects for all gases on a sir,gle chart. Such a plot is r_hown in figure 15.1. All

*This equation is a variation of equation 4.14 and does not appear in chepter T.
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that is requited to determine the viscosity from this figure is a knowledge of ,'be critical

tei.-nperature, critical pressure, and the viscosity of the gas at the critical point. Critical-

point pressures and temperatures for severed gases are given in table 2.1, chapter 2. Critical-

point viscosity values are lis_ed in table 15.1. Also, viscosity data were extracted from

figure 15.1 for the common gases (_r, nitrogen, helium, hydrogen, and oxylgen) and were

plotted for the specific g_ases in '.he applicable sections o( the appendixes.
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CHAPTER 16

APPUCATIOIN OF ADIABATIC AND ISENTROPIC FLOWS

GENERAL

Adiabatic flow can be a_sumed with accuracy when the (tow traasport time thro_.,_h the

given flo:--, process is very sho_ and/or when the pipe-wall temperature is appwximately

that of the flowing fluid, as with a well-insulated pipe. With negligible heat transfer, there

can he no change in stagnation enthaipy and, for a perfect gas. no change in stagnation

temperature, regardless of any friction and turbulence that may exist.

lsentropic (reversible adiabatic) flow can be assumed with accuracy on!v when the

requirements for adiabatic flow are fulfilled as described in the prececling paragraph and

when there are none of the irreversible effects caused by turbulence, flow separation, fluid

friction, and shock waves. In general, the physical changes that _,ccur in isentropic flows

are the result of smooth-flow area change_ in relatively sho'4_ distance._. }"or isentropic

flows of perfect gases, the stagnation values of pressure and :_ensity also remain constant,

as does the stagnation temperature.

In all cases presented here, the flow is considered one dimensional, which implies

that the velocity and fluid properties are constant across _ny cro_s section of the pipe. There-

fore. the solutions cannot be expected to produce extreme a_curaey in the analysis of rapidly

expanding (overturned) n_zzb, ,. for example.

ADIA_A_C FLOW

The steady-flow velocity of any fluid is related to its static and stagnation enthalpies

by the energy equation {5.1) with _. numerical value assigned to 2g_J

V= [2gJ(ho-h)]::z=223.8 V_o-h 15.11

Continuity requires the foll,,wing relationship

The mach number is defined by

u,= yAV= gcoAV [5.3l
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For a perfect gas. eqt,ations _5.1_ and t5.5) can be simplified ',_ the t'_dlowing

I'== [2g,.Jc.tT,,- T) ]_ "-'=[ 21z,.(_) IT,_- T) ] _ " 15.91

(The above equation is a modiiied ver,fion of that appearing in ch. 5.)

and from equation {4.12f) where Y= q/:4

r (kg,-RT) '"_

The mach number of flow in pipes can b,_ computed from weight flow rate and gas properties

by

By converting the pressure term to units of psia, rather than psfa, and for the case of a circular

pipe of diameter D, measured in inches, equation (5.22) becomes

M= 0.22¢5 (_) (1) _]-_ [5.22a!*

Further conversion of the flow term to units of standard cubic feet per minute, rather than

ibm/sec, yields

/SCFM_ [5.22b]*
,If= 15.21 t- 1-_--/ pD'Z

Equation (5.22a) can be modified to produce an adiabatic weight flow parameter in terms of
the stagnation temperature, the local static pressure, and roach number.

[5.23]

The ratio of stagnation temperature to static temperature for a perfect gas in any adiabatic
flow is defined as

q

T ,

where To remains constant throughout the adiabatic flow path The stagnation temperature

and stagnation enthalpy are the only two properties which remain constant in adiabatic flow.

3O8

*This equation is a variation of ,quation q5.22_ and does not appear in chapler 5.
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APPLiCATIO,V Or ,401ABATlC AND m_NTROmC l_tOWS

EXAMPLE P_OBLEM 16.1

A storage bottle contains nitrogen at 1500 psia and 80 ° F. The gas is flowing from the

bottle through a complex, insulated circuit to a pnint where the line pressure and tempera-

ture are measured as 10.3 psig and 0° F, and the pipe has a l-inch internal diameter. Com-

pute the velocity, v-eight flow rate, and stagnation pressure and temperature at the
downstream bcation.

SOLUTION

The flow is assumed to be adiabatic, and the stagnation enthalpy is constant at the value

existing in the bottle. At !,.q)Opsia and 80 ° F, the Mollier chart for nitrogen (fig. C.I, app. C)

yields/to = 178.1 Btu/Ibm. Likewise, at 25 psia (10.3 pslg) and 0 ° F, the chart yields h = 166.6.

By equation (5.1)

V= 223.8 X/178.1 - 166.6

= 759 It/see

The weight flow, by equation (5.2L is w = 3,AV, where

P
_' = ZRT

The compressibility factor for nitrogen is found to be essentially unity at the dc, wnstream

point ,of interest by reference to figure C.2, append:_x C. Then, using the absolute units _ff

pressure and temperature,

[  i1rl
PAV [(144_I0.3+ 14.7)JL4414A)_ ] (759)

ZRT {1) t55.2) {460)

= 0.588 ibm/sec

Since the value of Z is found to be unity and the value of specific heat ratio is found to be
the nominal 1.4, by figures C.3 and C.4 in appendix C, the nitrogen can be considered a

perfect gas at the downstream locati',m. Then the roach number is, by equation (5.22a)

  =0. 245(05ss ./t55.2)¢460i, 1.4

=0.711

Jn figures 16.1 and 16.2, the pressure nod temperature ratios are read at M=0.711; thus

p P T
p---_= p--_= 0 713 and _= 0._10

325-994 O-69--21

........ - .... - v*lr_. , J_r--_ .............



i

C044PRE&V, ED GAS HANDBOOK

.70 .)0

.90 .lO

.92 .N

.94 .06

.992

.1 .2 .3 .4 .6 .8 I 2 3 4 6 8 10

Moth Numb,Jr

Figure 16.1. ]sentropie temperature rati,_.

310

ORIG/NAL PAGE IS
OF POOR QUALITY



.45
.SO

.6O

.7O

.80

_4PPiJC 4TioN OF ADIAB,4T[C AND ISENTROPIC FLOWS

I

8_

l.i

I-I:

pI-
:+

.90

•92 _::

.94 '*

.95

•96 '-:'-
,.=i

.97

.98 ,'_

2;
¢

_t

.,,
.I

k

.2 .3 .4 .6
Subsonic Mach Number

Figure 16.2. lsentropic pressure ratio.

.8

Then the absolute static and stagnation pressures and temperatures are

p= 10.3 psig= 25 psia

25
P" = 0.7|---_ ---35.1 psia

= 20.4 psig

T= 0o F = 46O ° R

46O
T,,= 0._ = 505.5° R

= 45.5° F

.01
1

ORJGIh'AL PAGE F3
OF POOR QUALITY
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ISENI'RO_C FLOW

In general, one-.dimensi.nal isentr{_pic {reversible adiabatic) flow c,m_J.iti,>n_, c___ bc

('losely achieved only in the case _f sm4_,th-area changes (changes that are n,,! !,_., abrupt),

am| where fricfi,m and turbulence effects ar{ negligible compared to that ,_f the ar_:.: change.

The analysis of the isentropic flow of a real gas. at conditions where the gas doe,_ n,._ behave

as a perfect gas {high pressure and/or h,w tempera{ureL requires the use ,_f !her_-_,dynamic

charts, such as M,_l!;.er diagrams. The processss of real fluid property changes must be

evaluated along the lines of constant entropy lfi;r which the analytical formulations aze n,_t

readily available) and the general adiabatic fl_,'._ fi_rmulas Ceqs. (5.1) and (5.2)). Other

relati,ms between fluid properties can be obtained graphically |'r,m the :herr, iodynamic

chart along the particular isentropic line.

For the case of a perfect gas. the exact rela'.io,,._hips for the isentropic flow proc,_ss can

bc established by integrating the first law of thermodynamics, after substituting perfec:-gas

relationshir_s. The resulting fluid-properly changes between any two points in the isentropic

flow field of:, perfect gas are as follows:

p--i= _,/,/ _ _ I5.251

Pv _= P,v_'= P_v_" = constant [5.261

T--_:: [ _,_ -- [5.271

Since the flow field may include an upstream reservoir where the fluid properties are

the isentropic stagnation values, and since all stagnation properties of a perfect gas are

constant throughout the isentropic flow _eld, the preceding relationships can also be used

to obtain the static to stagnation property ratios at a given point.

T /y'_-' (v I-_-" [P \_-' [5.281

[5.301

These isentropic stagnation ratios of pressure and weight density can be related to the

Ioca._ _eight flow condition, specifically in terms of roach number, since it was shown previ-
ously by equation (5.10) that

"-_ = l-b M 2
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[5.311

15.321

When the flow becomes choked isentropically, as in the throat of a smooth nozzle, the choked

throat static {*) to stagnation property ratios are obtained by substituting ,14= 1 into the pre-

ceding eqLations, yielding

T* 2
T0 =k+---:_ , I5.331

e,
P0 - \k + 11 [5.34l

yo = \_-VT/ [5._,l

where _ is also equal to
yo

An isentropic weight flow parameter can be obtained from equation {5.23) entirely in

ierms of stagnatlnn properties {by substituting equations (5.10) and (5.31). since, in isentlopic

ttow <-[ a perfect gus. all stagnation properties are constant. Then the isentropic flow parame-
ter is

_/\_,) [5.36]¥ kge _ ___.3_

M[7.+(_)M z] "'_'-"

although the local math -_;,,,v,_r'-'-_is still de_ne,d by the local static p_operties and equation

t5.22). The maximum flow rate is often of iwterest and can be established at the choked
condition where M--- 1. so that

,4, max\Po/ _-_gc =" \ A* ] _kg_ \,_.+ 1/
[5.371

(The above equation is a modified version of that appearing in ch. 53

Since the case of a variable flow area is the most common application of i_;entropic flow

in practice, the explicit effects of area change are useful. By combining equations (5.36)
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an('; _5.37), the area at any point along the tt.._w cha_nel is rela:ed to that area which will

cause choking as a tanct,on of the local ma,'h numb,..r.

+The above equation i_ a m.,_!ified version :,f that appearing in oh. 5.)

The impulse function Fi is defined as the sum _f the pressure and momentum for(es
that can be associated with a flow strcan, at a given location.

F_= PA + p////z [5.391

The impulse function is especially useful in establishing :he cesuhar, t forces on a containing
channel within which a fluid is undergoing any steady-tiow process. The res,dtant force

acting on the fluid by the wall and in the direction of flow is

F,,._ = Fq -- F_, [5.39a ]*

The force of the fluid act.rag on the wall is equal to Fu._ and opposite in direction. For a

perfect gas

F, = PA _1 + kM' ) [5.401

For a perfect gas and isentropic ltow, the impulse function can be nondimensionalized once

again as a ratio to the value, F*, which the particular flow would exhibit at the point where
M=I.

F, i + kM"-

WORKING CHARTS AND TABLES

The several dimens;,,.less ratios _)f fluid pr,,i_erties, flow area. and impulse function

have been tabulated f.r the isentropic fl,_w .f perfect gases in numer_,us publicati,ms fKeenan

and Kaye. 1948: Ames. 19.53: and Pratt & g;hitney Aircraft. 1963). For convenience, an

abbreviated set of charts lfigS. 16.1 through 16.8) is presented in this chapter to assist in

problem solving. The functions are pi.tted versus the comraon independent variable, the

roach number, which permits the evaluati,,n ,ff all the , ratios once one of them has been
determined

The utility of the dimensionless fi_rm, always as a ratio to the stagnz'ti.n _0) ,,r s,mic t*)

values, stems from the fact that fi_r any isentropic pert_ct-gas fl.w these reference values

are constant through.ut the flow field. Therefi_re. the change in pr.perties, areas, and im-

pulse functions between an_ tw. points in the flow can be obtained t,y finding the ratio _f

*This equalion is a variation .f eqtta/i.ta !5 3_ and d.es n-! a, pear ,n 4"hapTer 5.
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the dimensionless ratios, each evaluated at their respective locations.

/'__ To and ,42_ ,4 *

r,_

F,.,r example.
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Therefore, the first objective in solving a'._isentropic flow problem is usually to determine

the roach number at i]ic p,_ints ,f interest and/or some change in property or area by which

the math numbers can be obtained. Tb,'n. utilizing the plotted or tabulated isentropic

flow fur.ctio_ (for the proper value of k_ and remembering that all stagnation properties
and sonic ;_!_es are cons:ant for all locations, the desired s<,lut;on can be obtatned.
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Figure IA.5. |sentropic flow parameter.

EXAMPLE PROBLEM 16.2

Nitrogen is to be suppl.ied to a 2-ir;ch (I.D.) pipe at 70 ° F and 1000 psia from a large
manit,Ad. A low-loss, nozzle-type entrance that incorporates a reduced throat size for the

purposes of |_m[ting the maximum tt,_w to 13 000 scfm is to be used (fig. 16.9). The design
flow rate is to be _0000 scfm. Determine the required throat diameter D and the conditions

at statioT, s 1 and 2 at the design flow conditi,_,ns. Also determine the resultant force of the

fluid on tLe nozzle be¢ween the nozzle inlet (at the weld) a_d station 2.
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_OLUTION

Assuming isen,'ropic flow and the nitrogen to be essentially a perfect gas, with

k = 1.4 and R = 55.2 ft-lbf/lbm-°R

A.nd sitlce the limi:mg condition is choked flow, equation (5.37) and the trait conversions

shown in equation (5.22) are used to find D,
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Solving for D yields
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Figure 16.7. Isentropic impulse functions.

D= 1.016 in.
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For desi_-n flow conditions of 10 000 scfm, the isentropic Bow parameter of equation (5.36)
is evaluated with the unit c,_.aversions of equation (5.22).

./_,o+
¥ 1.4 (55.2)

Vk-_- =-:1;21 lOOOll.O16)'

= 0.3176

5u,c." equation (5.36) cannot be solved easily for the throat maeh number, it is adv'm-

tageous to use _h_ pirated solution nrovided in figure 16.5 yielding

M, = 0.426
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4" D 2"!

! '

Figure 16.9. Low-h*s, nozzh,-type enlram:e.

The static fluid properties at the throat are from the isemropic rados.
Figure 16.2 yields

_=0.88!
Po

Figure 16. I yields

Figure 16.6 yields

so that p_= 1000 (0. 881) -- 881 psia

so that T: =530(0.965) =512 ° R

.41
--= 1.5
,4*

Station 2 condition is easily limnd, u'ing the known area ratio

,4, \Dr/ 1.-_ =3.87

and the value of (,4n/A*)from the preceding, since

A---_= \_'_ / \_'; ]--- (3o87) (io5) =5.82

At this value of (/lz//l*), the subsonic value of M2 and the fluid property ratios at Location

2 are" obtained once again from figure 16.6. The subsonic value of M_ is selected since, if
M_ is subsonic, flow is subsonic everywhere and

M..,= 0.1
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and

T_, 0.098
r,,

COtfPRESSED {,4S H.4;SiDBO¢)K

so that T_,= 53(_0.998) = 529 ° R

'The resultant fi_rce on the nozzle is obtained best by equation i5.40) in this case. since

the pressure_ dud much numbers are known at both I_cations. At the inlet. M = 0 because

the _rea is approximately 16 times that of the throat, and the pressure is essentially the

manifold pressure. At the outlet, station 2, the necessary quantities were evaluated as
described. Tl',_n, by equations (5,39a; and (5.40)

=-9417 lbf

Then the resultant force on ".he nozzle is 9417 [bf in the direction of the flow.

CHOKING IN IgENTROPIC FLOW

Choking in isentropic flow ,_ccurs only in a region of reduced flow area, whether the

upstream flow is subsonic or supersonic. In the usual case of subsonic upstream flow, the

pressure, temperature, and densit) decrease as the flow accelerates to the throat where the

static properties, relative to the s_agnation values, are represented by equations {5.33k

(5.34.k and i5.35). Th, :_ccurs only when the back pt,ssure is reduced sufficiently to cause

choking. Beyond the throat, th__ ii,:)w can continue to accelerate to supersonic velocities in

an expanding flow channc e _f the back i_ressures are very low or decelerate subsonically if

the hack pressures are relatively high. For intermediate back pressures, a normal shock

will usually divide two isentropic flow reruns within the &;wnstream diverging section.

with supersonic flow u_lream and subst, nic ttow d_,wnstream of the shock. For any given

reduced area and downst:,e:mt ,'onfigurmion. there is a specific back pressure which will

produce _'hoking in the reduced area. Reduction in back pressure below this value will

n_: increase the mass flus rate through the system. However, increases in flow rate can be

achieved by increasing the upstream pressure. The isentropic flow relations presented

earlier can be applied to choked flow in smo_,th-area change sections at least to the point

of choking.
OPERATION OF NOZZLES

_£here are two basic types of nozzles: conver_ng and converging-diverging. Cnnverging

nozzle_, ;n the usual applications, generate flow velocities up to but no greater than sonic.

Con_e_'ging-diverging nozzles can generate supersonic velocities in the diverging section

if the ba_:k pressure is maintained low enough. If the back pressure is lower than :hat

required to choke the nozzle, but not low en6ugh to produce the supersonic much number

associated with the area change of the divergent section, a normal shock will occur within

the divergent section to slow the flow to a subsonic value ahead of the outlet.

A complete description of nozzle performance and computation methods can be found

in "Operation of Nozzles" in ct_apiei 6 and "Normal Shock Waves" ;_, chapters 6 and 17.
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PERFORMANCE OF REAL NOZZLES

Nozzle ei_ciency is a measure of the conversion from thermal euergv to kineli¢' energy

by the noz.de and is defined as the ratio of actual )o isentropic static enthalpy changes between

two pressures. Then

ho - h,,
7/=- h(,-- h, and _=_ [5.42l

For a perfect gas.

T, \P,,/ J

r,

15.431

The nozzle discharge coe_cient is defined as

where w_ is the flow that would have occurred in a truly isentropie process with the given

pressure drop and wa is the flow that actually occurs.

An adiabatic relationship is found to be applicable to describe an irreversible pr¢_:ess,

ahhough it consists of the product of two iseutropic functions. This relationship is usefu!

in establishing the conditions downstream of a choked nozzle, even though the flow immedi-

ately downstream of the nozzle is irreversible.

4 ' "P

k÷l

k+l/
15.46]

This function is solved graphically in figure 16.8 and requires the knowledge of all the terms

of the leftmost grouping. The station subscripts are based on the notation of figure 5.13

(ch. 5). Station 1 refers to the t-pstream location; t refers to the nozzle throat: and station 2

refers to the downstream location of interest. The ve_ important requirements in applying

this relationship are assurance of choked flow and knowledge of the downstream static pres-

sure which must be obtained by other means.

EXAMPLE PROBLEM 16.3

When the nozzle of ."ffi_mple problem 16.2 is operating as a flow limiter, the flow becomes

choked at location 1, and supersonic flow exists in the divergent section. However, due to

boundary-layer growth, the supersor_ic flow is shocked down hy the complex system of shocks

described in "'Oblique Shock Waves" in chapter 6. At point 3 downstream of the nozzle in

the constant area pipe, a static pressure gage measures 150 psig. Determine all the flow
conditions at the downstream location 3.
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_OL., TION

Assume C_= 1 G_r the smooth nozzle. By equation qS.46L with proper subscripts for the

problem,

A P ......

= 0.637

The graphic .solution of equation A5.46_ in figure 16.8 yields :14:_= 0.85. at which P:dPo:_ = 0.6235

and ?'._/T,_._= 0.8737. Then
164.7

0.6235

= 264 psia

Also, T0s---To = 530 ° R, so that

T,_= 530 (0.8737)

= 46,3° R
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CHAPTER 17

APPLICATION OF SHOCK-WAVE THEORIES

i

Shock waves are discontinmties in fluid properties which can occur in supersonic flow.

Normal shock waves are discontinuities that lle in a plane normal to the flow and generally

are the result of a straight-line deceleration under adiabatic condi*ions. Oblique shock

waves are lesser discontinuities that are inclined to the flow direction at some angle less

than 90% Oblique shocks generally result from the turning of a supersonic flow under
adiabatic conditions.

NORMAL SHOCK WAVES

A normal shock wave may be considered an extremely rapid change in fluid properties.

occurring normal to the direction of flow of the fluid stream and taking place over an ex-
tremely short distance.

Changes in Properties

The downstream-to-upstream temperature ratio can be expressed in terms of the re-

spective roach numbers, based on constant stagnation temi:,erature for the adiabatic flow.

= [6.2l

T_ 1+\--,_--/ .

Since the area is the same on both .,,ides of the shock, the continuity e_iuation yields

m w

"==pxVx'=pyVu_ or 2 = "w,V._=_.F_ [6.3]

The s,tatic pressures are related by

'k-- 1

325-994 0-69--22

[6.5]
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Equation (6.5) is also known as the equation of the Fanno line in terms of P and M dnd

is obtained by combining the steady adiabatic flow-energy equation, continuity equation for

constant area, and the perfect-gas l'_w. The pressure ratio across the shock can be ob-

tained differently by utilizing the .nomentum equation rather than the energy equation.

The res_dting equation defines the Rayleigh line in terms of P and M.

P._ 1 +kM_ [6.111

The direct re!atio_i betsvee,1 upstream and downstream mach numbers is obtained by com-

bining equations (6.5) and (6.11_ to yield

2

M_+ _ [6.141M_ i ,_L \

{ } 1
\g_l/

Substitution of equation t5.i9) into equation 16.14) yields the useful relationship

M_.M u- 1 [6.15l

The substitution of equation t6.16) into (6.11) gives a ratio of downstream-to-upstreAm pressure
ratio as funetio.-. _.f ttpstream roach number only.

/2k'l k-1
Pff\T_-';-il M_ k+ 1 [6.16]

The temperature ratio is obtained by substituting equation (6.14) into equation (6.2).

r. [(I,+ 1),
L2-T/_:i'_ ] MI

[6.17]

The density ratio is expressed most simply as ghe ratio of equation (6.16) to equation (6.17).

T_

[6.18]

The combination of equation (6.18) with equation (6.3) gives the velocity ratio across the shock

P_

[6.19]
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Similarly. using equations (6.14) and (6.16) and the isentropic fl,,w relationships of chapter 5,

the stagnation presst:re change is found to he

Po" [i 2k k-l] [6.201

Equati.-m _5.31) can be substituted into equation (6.20) to produce the downstream stagnation

pressure ia terms of upstream static pressure and roach number.

k--"-r,'L\k+, / `% _+

[6.21i

Equations (6.14), (6.16), (6.17), (6.1&;_ (6.20), and (6.21) are solved graphically and pre-

sented here as figures 17.1 through 17.6 to facilitate proble_n solving. Tabulated solutions

can also be found in numerous other publieatiens.

¢¢,,,,---_am_mt-Di_mtlt4mt Nmxhn_

Normal shock waves often occur in the divergent section of convergent-divergent

nozzles. It is expl_ained in chapter 5 that normal shock waves occur in overexpanded

convergent-divergen_ nozzles when the nozzle back pr*ssure Pb is:

(1) Les3 thon a minimum (established for the _articular no_zle) that will permit subsonic

flow throughout the no::zle, except sonic at the_ throat: and

(2) Greater than a maximum value (es:ablished for the particular nozzle_ that will permit

supersonic isentropic flow throughout t:_e divergent section to the nozzle exit.

Referring to the nomenclature of fir,ilre 6.2 (ch. 6), these back pressures causing a normal

shock in the nozzle arc in the range of P4 > P_ > P_. As Pb is reduced from a value _,f P'4'

the normal shock moves downstream from the throat region toward :he exit, until at Pt,=P ",

the normal shock stands in the nozz:e exit.

The methods of es:ablishing the _ow conditions throughout the nozzle utilize the isen-

tropic flow relationship_ upstream and downstream of the normal shock wave, and the
normal shock functions .establish the change in conditions across the shock. The isentropic

equation (5._) relates the local flow area of the nozzle to the local roach number, in both

the supersonic and subscnic regions, as shown oh the plotted solution in figure 5.6 (ch. 5).

The procedure, outlined briefly m "Normal Shock Waves" (ch. 6), will be demonstrated

in the following example.

EXAMPLE PROBLEM 17.1

A smooth convergent-divergent nozzle (fig. 17.7) is operating with air. The measured

upstream pressures and temperatures are 500 psig and 80 ° F. respectively. The outlet
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pressure is measured to be 16,5 psigo The upstream flow area _s 0.3 square inch, the throat

area is O.1 square inch, and the nozzle exit area is I square inch. Determine:
{1) The weight Flow rate;

{2) The location of normal shock, if one exists, in terms of the nozzle area at that point:
and

(3) The fl_w conditions at the nozzle exit in terms of roach-number temperatures and

pressures.

SOLUTION

_1) First, it must be established that the flow is choked in the nozzle throat. Proof of

choked flow requires only that the exit pressure be shown le_s than the minimum all-subsonic-
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| * X •

Filpmm 17.7. Smooth eonverrnt-divergent tmz__le.

Ik i P,

Po

| X* X*' Xx D

xy
X - Nozzle CenfarlineDistance

Fi_mrt_. 17.8. Pressure diagram.

flow exil pressure indicated as/)4 in figure 6.2 (eh. 6) and figure 17.8. The pressure diagram
must be slightly modified to account for the upstream velocity wMeh is significant in this
case. Note that the upstream pressure Pi is not the stagnation pressure and that, with

isentropie subsonic flow throughout the nozzle, the outlet static pressure P_ must be greater
than Pi (nearer to stagnation) due to the larger area and lower velocity at the exit. Since the
nozzle-exit pressure was measured to be much less than the inlet, it can be definitely con.
eluded that the nozzle is choked, and the nozzle throat corresponds with the sonic (*) condi-
tions. Then the much number and stagnation conditions at station 1 can be established using
the isentropic flow relations of figures 16.1, 16.2, and 16.6 (oh. 16) as follows. The area ratio
for the upstream location is

At 0.3
A* 0.1

For a value of k: 1.4, al_d A_IA*=3, 6gure 16.6 {oh. 167 ymlds

M, =0.198

33¢
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S.milarty, from figures 16.1 and 16.2 (eh. 16} at Mx---0.198

and

T__2=
To 0.99'23 so that T. :=460+800.9923 _ 544"2° R

Po 0.973 so that po = 500+0.97314.7 529 psia

Equation (5.37) defines the choked flow rate as

_,t-I

1,4+i

= 1.206 Ibm/see

(2) To determine the nozzle-flow conditions, a trial-and-error solution is required using

the pr_edure outlined in "Normal Shock Waves" (oh. 6). This procedure requires that
the nozzle area at the shock-wave location be assumed and computations repeated until the

computed exit pressure agrees with the known pressure. Proceeding, assume arbitrarily that

E_tecing figure 16.6 (ch. 16) for k = 1.4 and/t_jA* = 4 in the supersonic region yields

M_.= 2.94

Obtain the n,ach number downstream of the shock, My, by entering figure 17.1 at m_.=2.94

and k= 1.4.

M_ = 0.4788

Figure 17.5 yields the stagnation pressure change across the shock

The stagnation pressure is constant throughout each isentropic process upstream and
downstream of the shock so that

P°_=0.3457 and
,to,

Po_ = 0.3457(529) = 182.9 psia
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The exit t::ach number Me is fou_,.d from the known area ratios involuting the fictitious throat

area A*' of the suLsonic exit region. M Mu = O4788, figure 16.6 {oh. lhl yields

The exit area ratio can now be calculated in terms of A*' a_

where A_--Aj. The assumed v_iue of daiA*= 4 requires that

'rhe,rl

dt=4(O.l) =0.4

,4. (1.0_
= = 3.46

The exit mach number from figure 16.6 (ch. 16_,at de/A *° =3.46 and k= I,-_ in the subsonic

region is
Me=0.170

Figure 16.2 (ch. 16) yield_ an outht pressure ratio at M_ of

which, when combined with the stagnation pressure obtained in the preceding equations,

yields the outlet _tatic pressure

Pe = 0.980(182.9)

= 179.2 psia

= 164.5 psig

Th_s value of noz_e outlet pressure agrees sufficiently with the measured vahze of 165 psig.

Therefore, the assumed location of the shock wave (/I_/A* = 4) is correct, and the remaining

flow parameters can now be evaluated based on that assumption. If the computed down-

stream pressure had not agreed with the known value, a new area ratio (A_/J*) would be

assumed a_d the procedure repeated until agreement was reached. Increasing the area

ratio reduces the computed outlet static pressure, and vice versa.

(3) The exit much number .Me is 0.170 as computed, and the outlet t_mperatare is

obtained by notit_g that the stagnation temperature is constant throughout the adiabatic flow

field, regardless of the irreversible shock wave. Then

r
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where T_/T,, is ev,-duated in figure 16.1 lch. 16_ at k= 1.4 and ,Tlr= 0.170. Finally

T_ = 544.2 (0.9942)
=.541 ° R

=81 ° F

OBLIQUE SHOCK WAVES

Oblique shock waves are a general form of discontinuity in supersonic flow and. in the

limit, they approach the normal shock wave. Oblique shocks are inclined to the flow direc-

•ion, and they occur when a supersonic flow undergoes a change in direction requiring a

cor_ pression.
Changes in Pmpmties

A relation between pressure and density is obtained by combining the momentum and

energy equations for the control volume with the velocity and geometrical considerations

identified in figure 17.9. (The original equation (6.41a) from ch. 6 has been slightly modified.)

P, k+_____l_
k- 1 ")'1

[6.4|a]

Equation (6.41a) solved for density

{k+ 1'_

_= \_z-- i/ I'P'] + l [6.41bl
% k+ 1 ,_P_,

k- 1 PI

(The original equation (6.41b) fro;la oh. 6 has been slightly modified.)

Streaml in¢,_ ._,ock-__

" " "' ['[.t

VIa tll

c..,.o, /

\\\\\\\\\\\\\ \\\\\\\\\\\\\\ "" }

Figune 17.9, Schematic of oblique sh_¢k.
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The velocity ratio acr.ss the shc,<'k can be expressed in terms of the two angles

V, cos (o_- 8)"

Combining this with the continuity equation yields a new expression for density ratio across
the shock

Z_--._ tan o"
yl tan (0"--8) [6.44]

(The original equatio1_ (6.44) from oh. 6 has been slightly modified.)

Further combination of relationships for energy, momentum, continuity, and perfect-gas

behavior yields two additional relationships for pressure change

and

_= 1 + k (1-Z_) M_tsin_ o"

P-_=I (1 */sp, .+k -_ll) M_isin2 (o'-8)

!6.461

[6.46]

Equations (6.41), t6.44), (6.46), and (6.46) have been solved simultaneously to produce the

direct relations between the various parameter:;, and these relations are plotted as figures
17.10 through 17.13 to aid in problem solving. More detailed and exact graphs can be
found in the NACA Technical Report 1135 (Ames, 1953),

The following temperature-change relationship is provided for completeness, as obtained
from considerations of the change in kinetic energy to thermal energy_

,, [, _<oe<,1_-_: 1+ M[ cos 2 (_-SiJ [6.471

Analogy With Normol

[t is often c<mvenient to transform the coordinate system for oblique shocks so that the

normal shock functions can be applied. This can be done by making the following analogies.
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Conical $hockR

The oblique-shock theory developed to this point corresponds with a two-diraensional
surface such as a ttat plate. A coaic_tl section will cause oblique shocks that are conical

discontinuities rather than plane. For this case, the stream lines are not straight and parallel
to the surface, as with the fiat plate, but actually curve to approach asymptotically the direc-
tion of the conical surface. The initial flow deflection across _he sh,)ck wave is the same as

that described %r the two-dimensionxl case, with the observed shock angle established for
a cone. A more detailed description of oblique-shock theory h_r fiat plates, wedges, and

cones is 5eyond the scope of this book.
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Figu_'e 17._0. Wave-angle variances with initial roach number.
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CHAPTER 18

METHODS OF FLOW MEASUREMENT

i

The equations that predict the change in fluid properties caused by a restriction placed

in the flow path are derived from the first law of thermodynamics when the flowing fluid :s

compressible, and Bernoulli's equation when the fluid is incompressible. These equations

give the theoretical rate of flow, which must the_ be modified by flow coefficients to obtain
the actual rate.

The value of the flow coefficient used with either of the above-mentioned equations

depends, in part at least, on the geometry of the particular device being used for flow-measure-

ment purposes. It will be found that the coefficient used in conjunction with the venturi

tube is very near unity, which indicates that the theory employed to calculate venturi flow

rate is extr_.mely accurate. The flow coefficient used with the flow nozzle is also near unity,

but not so near as the coefficient used with the venturi tube. The coefficient used'with the

orifice deviates considerably from unity, indicating that simple theory alone does not ade-

quately describe the flow through an orifice.

THE HYDRAUUC EQUATION

The flow of an incompressible fluid through a constant-area passage into whk'h a venturi

tube, a nozzle, or an orifice has been inserted can be calculated by observation ,,f Bernoulli's

equation. The assumptions necessary are a steady, fully developed flow and no sensible

heat transfer.

Writing Bernoulli's equation between an upstream section (1) and the throat section {2)

yields
y_v',-y,v;

P, -F2=
2g_

Since the flow is incompressible and steady, the preceding equation is rewritten, using the

continuity equatiou

[),2_P,

or, solving for the throat velocity,

v, /
343
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Defining

D, ,4i
Equation (7.2_ becomes

_Og,,,I2{e, - p,_,t,,

The weight ti_,;s may now be expressed in terms of the throat conditions as

Equation (7.3), known as the hydraulic equation, exnresses the theoretical mass flow rate in

terms of the three measurable variables: pres_x:re, area, and mass density.

THE COMPllESSIBLE FLOW EQUATION

The equation for theoretical rate of flow of a compressible fluid through a venturi tube,

a nozzle, or an orifice is found in a manner similar to that for incompressible flow. The

assumptions necessary for this analysis are a perfect gas and steady, reversible adiabatic flow.

Writing the first law of thermodynamics between an upstream section (1) and the throat

section t2) yields

-_ = hi -- £,
2g, J

5race the gas is perfect and the process is isentropic (reversible adiabatic), the foregMng

relation may be written as

v_ -_,_ k
2---_ = (k- 1-------)(P,v, - P2w.) [7.5]

For a steady floyd, the continuity equation yields

Substituting for V_ in equation (7.5) and solving for the throat velocity yields

where

For an isentropic process

' k

V._.-=(-ff_) 2gc( Pivl - P.,_v.z)
I7.61
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JV, t" 1-- rZ'_fl_
17.91

and the mass ra:e e,_pressi,n in terms of the throat conditions becomes

-.w=_A_ _Z']" 2gcIP, v,){l I7.101

Now, by employing the perfi-ct-t_s law and the isentropic property relation Pv k = constanl,

the mass flow rate may be written as

rs_s_,_p,-e,)l,,,rr,,d* ',(_-'_"-'"q '-_'w=,t, L i--_ J t ' t-i-Z-T] _-r _(_-r,*ovJ 17.131

Note that equation (7.13) is simply the hydraulic eq_mtion modified by the factor Y,, where

ya = [r.,i_(k k_l) ( l - r_*- ":k' -- r'.,,'kl3U j
17.1_1

The value of Yo depends on the pressure ratio r, the diameter ratio ft. and the specific
heat ratio k. If the specific heat ratio is constant, it i_ possible to plot a family of curves to
represent Y,, over the pressure ratio range from r= l t,) r= pressure ratio at which sonic
velocity occurs at the throat. Such a curve for k values b_'tween I.(; and 1.8 is shown in

figure 18.1. It is important to note at this point that the value Y,, just discussed applies to
the meas_rements of a perfect gas using either the venturi tube or the flow nozzle. It does
not apply to the thin-plate orifice. The value Y, used in the equation to calculate flow through
a thin-plate orifice is empirically determined and cannot be found by theoretical considerations.

CORRE,71'IVEFLOW COEFFICIENTS

The theoretical weight rate of _o _ of a fluid through a ;enturi tube. nozzle, or an orifice,

as given by equations (7.3) and (7.13,. must be modified by an experimentally determined

discharge coefficient, Ca. where

actual weight rate of flow
Car =

theoretical weight rate of flow

Applying this c-efficient to equation t7.3) for an incompressible fluid, it follows that

'r2g_Y(PI -- P_) 1l,'*w---(:,vt_, [ i:ff_ _ [7.151
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tlETHODS OF FLOW MEASUREMENT

w = K,<-i_[2g,,y( P, - P:) ] ,!_ [7.15a1"

C,t

it, -- V'i - l__

In tertns of diameter in inches and pressure in psia. equation t7.15a) become_

Also. for flow in cfm

[7.15hi*

[7.15c]*

The quantity Ke is termed the flow coe_eient, and 1/V_-/13'* is termed the "velocity

of approach factor."
The corrective flow coefficients just defined are illustrated graphically in figures 18.2

through 18.7. For the venturi tube, the discharge coefficient Cd is plotted versus Reynolds
number Re in figure 18.2. For the nozzle, Cd is pbtted versus Re in figure 18.3. and two
plots of C_-versus-_ ratio are shown in figures 18.4 and 18.5. Figures 18.6 and 18.7 are plots
of Ke versus R, for the sqaare-edged orifice.

The orifice flow coefficients ilL,, plotted in figure 18.6, are taken from the ASME i1959)

data for flange gaps !laps are 1 inch upstream and downstream of the upstream face of the
orifice plate) and 2-inch pipe (2.067-inch LD.). These data agree within i percent lof the

Cd

1.00
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0.97

0.96

L[ 1 ......
r r _ " _7_

I11111
I [ 1 111111

l ! I ::::::
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0.95 1 '., ,,,

, i i iii:::
1 I i "" ":::
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I 111111111 I l l l ] IiI
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Figure 18.2. Discharge coefficients for Herschel-tyce venturi tUbe.
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*This equation is a variation of equation (7.15) and does not appear in chapter 7.
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Discharge coe_cients for flow nozzles. [Courtesy of the _Smerican Society of,Mechanical Engineers, J

plotted vaiue) with the data for 1D and VzD taps, vena contracta taps, and corner taps, as

well as flange tap_ in the range_:

1.610 <_ pipe I,D. <- 4,026 inches

50 000 <_R,, _< l0 s (based 9n pipe l.D.t

0.20 <_/3 _< 0.60

The orifice coefficients of figure 18.7 arc for pipe taps {2/) and IOD) and 2-inch pipes

!2.067 I.D.). These data agree within I percent (of _he plotted value) with the data for pipe

taps and 2.067 -< pipe I.D. -< 6.065 inches in the range_:

50000 <_ R_ _< 10_ {based on pipe I.D.)

0.15 _<B _<0.70

The data agree within 0.5 percent for 2.067 <_ pipe I.D. <- 4.026 in the ranges:

50 000 <_ R, <_ 106 {based on pipe I.D.)

0.!5 _</3 _0.60
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Figure 18.4. Discharge c,em¢ienls f.r flow nozzles, [Courtesy {J'the 4merican No_'iety oJ'_lech_:nictll

Engi neers. ]
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Fibre 18.6. Flow fac¢or for thin-plate orifices.

Flang¢ _rlps

Accuracy: +-. I% when: 1.5 _ pipe size _< 6

_.000 <_ R, _ I0 e

0.15<_ _ _0.70

IOs 106

Re (Based on Pipe Inside Diameter)

[Courtesy"of the American Society of Mechanica/ Engineers.]

ID, I/2D .'ups; vena contracta _ap_; arw] corner taps

Accuracy: _ I% when: 1.5 _ pipe size _ 4

50,000 _ R, _ I0'

0.20 _ j8 _ 0.60

In using these charts for orifice coefficients, the tolerences tabulated by the ASME

(1959) for the various types of pressure taps, ranges of Re, ft, and so forth, r,mst be added to

_he previously quoted accuracies.

To meter compressible flows, all that is required is the addition of the expansion factor Y

i,to equation _7.15). For a compressible fluid flowing through a venturi tube or a nozzle.

the weight rate expression becomes

where Y,, is gisen by figure 18.1. For the orifice

*This equation is a varistion of equation (7.16) and does not appear _n chapter 7.

ORIGINAL PAGE IS
OF POOR QUALITY
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Figure 18.7. Ph,,w factor for thin-plate orifices Gripe lapsl. [(/ourtes) ¢¢'the ,4,neric.n Society _d,ifech'nic+tl

Fngit_e_'rs. ]

S,ceuraey: ± I% when: 2 _ pipe size _< 6 ._,ccuracy: +-p.SC_ - when: 2 <_ pipe size-<- ,1

50.000<_ R,. <_ IO" 50.000 _< R_ <_ 10"

0.15 <- /_ _< 0.70 0.15_ < /3 --_0.6

where Y, is given by figures 18.8 through 18.11. Additional data can be obtained _)n these
factors from the ASME {1959).

Equation i7.16) can be written in more convenieni units of pipe I.D. tin,:hes) and pressure
{psia) as

w = 0.525 K_YD'.'-_,X/y, (p+- 1_.,) 17.16bl*

or for flow in cfm

or in terms of scfm

F....

q- 31.5 K_YD_ [7.16c1"

sefm -= 7.74 RK,¥D I X/.,/,(p, - !_ ) [7.16d]*
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Values of , : P2 ';P1

Figure 18.8. Expan_i,,m fa(';-r f.r _quare-ed_e,I .rifiee. k: 1.3. [Courtesy c,f the -lmeric¢m ._ociet_ ,_]"

_lerh_mical En/zineers. ]
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Pressure T,]ps

• , in 1[ _ 11 j J

, ,\ '
\ _ Flow Hc_zle

__ (O.S Throot)

2-Inch P,¢_

Fisure l_ 12, Nozzle flow.

EXAMPLE PROBLEM 18.1

Water at 60 ° F flows through a 2-inch-l.D. p;peline and through a nozzle with a I/2-

inch-diameter throat as shown in figure 18.12. If the pressure drop is 100 p:i, measured

with ID and ½D taps. determine the mass flow rmp.

SOLUTION

The weight rate of flow is calculated from equation (7.15b)

Cd _,)

w = 0.525 _ o.;_ _/y(p, - p2)

The first step is to calculate Ca by assuming a Reynolds nuraber and entering figure 1_.5 at a

/_ ratio of 0.25 and reading the coefficient C t. Assume R,=2(10_): and, from figure 18.5,

read C,_t= 0.992,

Now, since y=62.4 and pl-pz = I0_,- psi, the we,g._.t 3_)w rate i.,_

[ 0.992 ]
w = 0.525 I_V_I__ (--_-.25)'J (0"5)2x/62"4(100)

= 10.3 Ibm/see

For this flow rate, Re can be evaluated using equation (4.14).
is 7.7(10 -4) lbm/ft-,,ec.

[. 10.3
= 15.28 {2.017.7(10_4)] }

Viscosiiy of water at 60 ° F

325-0,94 0-69--24

= 1.02 ( 10 :_)
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Since the value of Ca at the computed v_ue of R,. is practically the same as at the assumed

R_. no iteration of the computation is warranted. When significant variation occurs, the

calculation of flow rate should be repeated using a new value of C,i corresponding with the

more accurate, computed value of R,.

Compressible flow is computed in this same manner, except the appropriate Y exp, ansion

factor is included in the lt,.,w equation.
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CHAPTER 19

APPLICATION OF ADIABATIC FRICTIONAL FLOW IN PIP£S

GEl

The property changes that occur in a compressible fluid while fl_wing steadily through

a constant-area pipeline are dependent on a variety of f_c_.,rs. The most importa_, :f _.hese
are:

il) Characteristics of the gaseous fluid

12) Mach nmnber of the flow _a generalized mass flow parametl.r)

(3) i'luid friction acting on the pipe wall

14) Existence of shock waves

15) Elevational change

(6) Presence of pipe fillings, valves, and other co_nponents

17) Heat trans{er through the pipe wall

This chapter includes only the ewJuation of t|ie eft<'_t._ ,f items t! i, #2L _3), and 14). The

effects of changes in elevation are generally 'neg|::--:ib_c in _:_)mp_essible ff,,,vv problems as a

result of the low gas densities and will be negL-_ :_¢[ here W!-en very high densities and

great elevational changes occur, the effec:: _o staiic pressure cil_ b,_ approgimated by using

ari average density to compute the static pressure change. This is _,o.n added aigebraieally
to the other losses.

The presence of pipe fitiings_ val_ ,,,_.-._Jici vther componec,_s is not specihcally considered

in this chapter, since a comolete di,.-lJ_,n of the i_'ow characteristics of corr, p,ments is

foun3 in chapter 10. However. it is general practice to assign tquivalent a_mdimensional

lengths (L/D) of straight pipe t,> fittings and simple components, based on empirical data.

and treat them as extra pipe. This technique is considered acceptable il._c,,mpress_ble flow

problems only if the pressure loss across the component is a small percentage of the absolute

pressure, and if the gas velocities are relatively low lcorresponding to much number of

approximately 0.3 or lessi.

When heat is transferred between lhe fluid and the pipe wahl. _traightforward solutions

can be obtained for special cases. These nonadiabatic flows are tt|e subject of chapter 9.

The characteristics of the fluid are usually represented simply by the perfect-gas law

and the knowledge of the specific heat ratio and molecular we'_,ght. This simple description

of a real gas is satisfactory for conditions of high temperature and low pressure [relative to

the critical values for the particular gas). in the region of low temperature and/or high
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pressure, the deviation from the perfect-gas characteristics can be very s_gnificant. The

deviations are discussed in detail in chapters 2 and 4. and methods of acc_;unting fi_r them

in pipe-flow calculations are included in this chapter without further disct;ssion. Otherwise.

the" analysis of :he pipe flow phenomenon in this chapter will be based -n the perfect-gas

relationships.

The math number is the general mass flow rate parameter in pipe flow analysis. The

roach number also serves to factor into the analysis _he molecular weight of the gas and

the base levels of temperature and pressure.

When the effects ,ff fluid friction on the pipe wall are considered in the analysis, the

frictional pipe-length parameter f(L/D) defines the frictional characteristics of the pipe.

The [fiction factor f depends on the turbulent nature of the flow and also serves to factor

into the analysis the effects of fluid viscosity and pipe internal-wall roughness. The friction

factor is basically a function of the Reynolds number. The common case of frictional flow

in an adiabatic pipe is the primary subject of this chapter.

The comi,:essible flow functions developed in this chapter do not automatically account

for choked flow conditions or shock waves. However. the solutions identify the choked

conditions, and a discussion of choking and shock waves resulting from friction in constant

area pipes is presented in "Choking Because of Friction ""(oh, 8).

FANNO-UNE EQUATIONS

The flow of perfect gases through constant-area pipes, with friction and in the absence

of heat transfer and elevat,;onal cha, ges, is described fundamentally by the Fanno equation.

The combination of the first law totai energy equation and the continuity eq'_ation

yields the Fanno equation in terms of enthalpy and density.

V 2

h = h0-_ first law
2g_J

U

,-ontin,,ilv ectuation

G2t_2
h = h0--_ Fanno equation

2g,.J

Figures 19.1 and 19.2 i_lustrate the general shape of the Fanno !_ne on diagrams for h-v and

h--s and are helpful in illustrating the effect of wall friction on fluid properties. Figure 19.2

is possible since, for a pure substance, entropy can be defined by the two properties h and v.

When real-gas effects are s_ignificant, these plots can be made on the thermodynamic chart

of the particular gas.

It was shown in "Normal Shock Waves" _ch. 6) that point ,4, the point of maximum

entropy, represents the point where the roach number is unity. Also, it ,vas shown that the

lower portion of the curve IX to A) represe;_ts flow at supersonic velocity, and the upper

portion tY to if) represents subsonic velocity. Further, it can be shown that frictional

effects are necessary to pass from point to point along the Fanno line to satisfy the momentum

equation.
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The foregoing facts, used in conjunction with the sccovd law of thermodynamics, lead

to the following conclusions concerning adiabatic frictional flow through constant-area pipes.
The second law requires that, in the absence _)f heat transfer, the change in entropy must

be positive. Therefore, the flow processes described in the Fanno line must never be in

the direction of decreasing entropy. Then. _'_h reference to figure !q.2, fi)r subsonic flow,

the increasing entropy path occurs with decreasing statie enthalpy and an assc_'iaxed de-

creasing pressure and increasing velocity. %r supersonic flow. the increasing static enthalpv

path requires an increasing pre,,,ure and decreasing velocity. Thus. the effects of friction

on velocity, math number, and p_ _,sure are seen to be opposite h_r subsonic and supersonic
flOWS.

The Fanno-line equa'Jons establish quantitatively the changes in all the flow conditions

that occur in the pipe as the fluid progresses down the pipe. These equations are derived

from the perfect-gas law relationships, the definition of math number, and the laws ,,f c,nser-

ration of energy, mass. and momentum. The result is five simultaneous differential equations

that relate six differential variables. These include the fluid static properties, fluid velocity,

roach number, and the frictional pipe lenglh. The_e equations are then solved simultane-

ously an_d "integrated to p_'oduce the desired relationships, P:oeeeding with reference to

figure 19.3. the equation of state for a peff,_c* gas in logarithmic fi_rm is

in P = In _/+ In R + In T

which can be written in differential h_rm as

f8._l

The definition of roach number, written similarly in logarithmic _]ifferential form, is

dM _ _JV"_ dT

M _ Y" T 18.21

36t i

i
: r,



CO_IPR$.L_SED G.IS H [ _DBiH#K
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Figure 19.3. P;pe fl,,w element+

For adiabatic flow (h. = constant; of a perfect gas and using the definition. ,d' taarh number

and perfect-gas rela;ionship,_, the total energy equation can be written as

dr k-1 {dV"_= 0y+ (,-T-) 'w , r'] I8.31

The continuity equation can be written as

dVz _-d-2-_= 0 I8.+1
2V z 3'

Summing forces on the control volume of fig;_re 19.3 yields the m-mentum equation for a

perfect gas

de+ k,+P _.,+r-(_=,_ !8..+,I+ •
Equations t8.1) through (8.5) comprise the five necessary simu;tane,ms differential equation_

in the six differential variables: dP/P. dy/y. dT/T. dM';/M _. dV-'/V_, and "_]_dL/D. Although

these equations are sufficient to yield the simuhaneous _olutions. it is desirable to include

in the analysis the eva!uatien of the changes in siagnation pre=,su e. impulse flw.ction, and

entropy. The ratio of st,'tic pressure to stagnation pressure {eq. q5.31)) in Iogarifl_mic
differential form is

F kM z t
I + ,Ti'-' "II_

.J

dP,, dP

P. P

I..

The definition of impulse function {eq. (5.1.0)) yields

dF,_dP J-/ kM" \dM"

3'he entropy change is obtained from the first law of thermodynamics, and the pcrf,_ct-gas
relationship is

_=T- P i8.8i
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By sc!ecfing ;lie roach number as the independent variab! _, the remaining variables can

be defined explicitly in terms of M by simultaneous solu-'.ion of the eight equations.

The eql-ations are then integrated with respec* to math number to produce the explicit

relations ;.,etween _he fluid properties, frictio-_al length, velocity, and impulse function by

means ,ff the o;mmon pro=meter, the _ach number, it is first desirable to convert the

coet$cien_ o{ friction f_. since fricti,;, data are usually found in teems off. such as in the

,M_+ody d;igram. The conversi,m between these two coefficients can be derived from their

definition, the definition ,ff hydraulic diameter, and by equating the pressure and shear

forces of an incompr_.ssib|e element, such as that of figure 19.3. Note that dP_=-dP

f=4/_ I8.171

The lower limits of integration for the Fanno-line equations are selected at a point ahmg

the pipe where the mach number is M and where L= O, the zero reference for pipe-length

measurement. The upper limit is selected as the point where the roach number is unity
and the distance corresponding to M = 1 is the maximum pipe length. L,,,_,_. Integrating and

clearing the equation for the frictional length yield

kM_ + [-_:-- ! 2 1+ M_

where/is the mean friction coel_cient between 0 and L,_, defined by

/= l__L_ft'ma_fd L
Lr_ I _ J 0

The friction factor is usually found to

afro:r, the average value will always be

for simplicity. The variation should

lnte_ating and clearing the remaining

vary only slightly over the length of the pipe. Here-

assumed, and the bar over the symbol will be omitp_d

be checked using the Moody dia_am of chapter 3.

seven eqt;ations yield

P* ,TI 1 + M z
[8.191

[8.2Ol

T c _ k+ 1 18.211
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__._y=V* 1 1+ , M _
[8.221

[8.23l

F__= I+ k31"-

F* M _(k + 1)[1 ÷ (_-_"_) M z] [8.24]

-: tJ/ cp 2M 2 1+

Equations (8.18) through (8.25) are the Fanno.line equations, and accurate working charts of

the most useful of these are plotted in figures 19.4 through 19.8. Solutions are also tabulated

by Keenan and Kaye 11948}, Ames (1953). and Pratt & Whitney Aircraft (1963).

The equations t8.19) through !8.25) relate the flow conditions at s,:me upstream pipe

location to the choked flow conditions (*) at the end of a pipe of length L,,ax. Then, for a

given pipe system and a specified flow condition, there can be ,rely one set of choked flow

conditions, and these superscripted (*_ quantities are the same, regardless of what upstream

location is known and used to establish them. Conversely, the specification of flow condi-

tions at any location fixes conditions throughout the pipe. The additional relationship of

equation i8.18) estab!ishes the frictional distance between the kno_vn upstream point and

the location ofe_oking. Then, with reference to _ure 19.9,

L = (L.,_), -- (Lm_,_)z
so that

f (L) : [/(_-_)1, - [f (_'_) ] _ [8.261

Likewise, the entropy change from location I to 2 is found by

cp \ Cp 12 \ cp I

Sir_cc d'xe other pr-perties are related to the choked value as a ratio, a ratio fi)rm of equation

is needed. The change in pressure, for example, between locations 1 and 2 is found by

4.1.
a64
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I

Lrn°x I

Figut'e 19.9. Pipe-length measurrments.

All the other property changes are found by using the form of equation {8.28).

The usual procedure for computing the change in gas properties between two points

in a pipe with the graphic or tabulated solution is _s follows. The roach number is computed

for the point in the pipe where the flow rate and fluid properties are known. Some con-

venient form_ for perfect gases are as follows

Als_, in more eol_venient terms fi)r circular pipes and pressure in psia.

[8.29a]*

( SCFM _,/-T-
_kR

[8.29b]*

_q q_q_
,4 J

c "VFkgcRT
[8,2%]*

For imperfect gases {from oh. 4). using the actual sonic velocity [charted in appendixes)
and the actual volume and weight flow rates

q_q_ u_

c,, ca 7c, \,41 Pea
[8.29d]*

When written for circular pipes and pressure in psia

.ff = 1.273 \D'-'/ pc_ [8.29e]*

*This equati.n is a va,iati,,n ,f ,_quath,n _d.2_)and 3oes not appear in chapter 8.
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and in terms of standard cubic feet per minute

{scvM zr
,14--- 86.4 \---1-_--_] pO_c,, [8.2°4"I-

it must be remembered that the m_)dification of M to the real-gas value is only a partial

compensation for real-gas effects in a flow problem. The isentropic exponent k,, as dis-

cussed in chapter 4, must be used in the calculations and charts in place of the specific heat

ratio. The value of/': can be obtained from the folh,wing equations, usiag the actual sonic

velocity data or thermodynamic charts, as follows

Ca "

The point of known conditions may be either upstream. !, or downstream, 2. as shown in

figure 19.9. The frictional length parameters f(L,,a,,/D) and the fluid property ratios of

interest, such as P/P*, are read froth the graphs or tables at the computed much number.

The fr;o",mal len_hf(L/D), between the points 1 and 2, is computed from the pipe des" cip-
tion and combined _-ith the value t_ff(Lm_,JD), as read from the tables, in accordane,e with

equation {8.26). This c_,mputation establishes the value of f(Lmax/D) for the other point

in the pipe which, in turn, identifies the associated roach number and fluid property ratios

for that location by means of the charts. The change in properties between the two points

is then e_ aluated by means of equations ;8.27) and {8.28k and others of that form.

_]Xs, MPLE PROBLEM 19.1

A 30-foot run of straight l-inch stainless-steei tubing (0.81-inch I.D.) is uzed to vent

helium to the atmosphere. Because of a new system req_Arement, the quantity of helium

that must be vented has increased to 15 000 scfm at an upstream temperature of t_ F. and

at a pressure which may be as low as 1000 psig. Determine whether the tubing can vent

the increased flow and the exit flow conditions.

_-O1.1_ TION

Because of the }-figh flow rate requirement and the relatiw:ly short length of tubing, the

flow is expected to closely approximate frictional adiabatic flow.

The charts ot appendix D indicate that. fiw helium at 1015 psia I1000 psig_ and 0 ° F. the

compressibility factor Z and specific heat ratio _c_,/c,.) are practically the nominal values of

1.0 and 1.¢)7. respectively, so that the helium can be considered a perfect gas. By equation

{8.29b, I 15000 ]_/ 460M= 15.21 _ (1000) {0.81)2(1015) _1.66) (386_

= 0.2903

Entering figure 19.8 for k = !.67

{ =4.72

*3 _fis equati_, is a :ariati.,. -f equati.n 18.29_ and d.,.s i,,_', appear in < hapler 8.
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The evaluation off(L/D) for the actual tubing requires the evaluati_,n of the eoef_eient of

friction from the Reynolds number _.nd the M,--ly diagram of figure 3.4, _ch. 3_. The Reyn-

olds number for circular pipes, by eqaati-n __- '4), i_

From figure ID.5 qapp. D)./.t.,. ==0.018.3 centipoise at 10t.'_) psig and 0 ° F. '.-:nl sincf_

!_' = i_g,.= (6.72) l0 -t _,.

so that 15000

/_= 1.037[{0.81_386,0.0i85){6.72 × i0-4)1

= 4.00 × 10 _

For drawn tubing and a Reynolds number of 4.0× 10% figure 3.4 yielas

f=0.0o96

Then

1
= 4.27

Since fIL/D)<fIL=a,JD), the tubing will vent the increased flow.

2. are obtained as fi_llows. By equation (8.26)

fl Lmax\-I

= 0.*5

Figure 19.8 fi)r k = 1°67 and [fiLm_JD)]z = 0.45 yields

,_!2 :: 0.582

The exit pressures are obtained from figure 19.4 at M, = 0.2903 and ,_Iz == 0.582.

so that

P, P2

75-_= 3.91 and /r, = 1 .F.8

P, = Pt F; 1 88\
= !015 (_J = 488 psia

= 473 psig

The exit conditions,
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Similarly,, the exit temperature is obLained t'r_>minure [9.0

Then

T! T"

. ') .)?.. = _ _'_) and T_ = I .,.0,

tl.2o., 
T_ = F_ =40) \_1 = 1,25 ° R

"_/ = -35 ° F

DlkiCI' GRAPHIC METHODS--SUBSONIC ROW

The adiabatic frictional flow equations can be derived and integrated in the subsonic

range between two specific _ocations in the piping syslt_m to produce solutions that can be

charted. These charts then provide a direct meth(M for calculating the compressible fluid

property change_ between two locations in a piping system.

For example, if the mass flow rate and fluid properties are known at a point in the ptpe.

the mass flow parameter can be computed. And if the piping system is defined, the frictional

length parameterf(L/D) can be, computed tot the piping between the two points. Entering

the proizer chart with these values, the fluid property changes _,at (recur between the two

points can be read directly. These charts are graphic solutions of exact compressible flow

equations which have the same theoretical basis and are subject to the same assumptions

as the Fanno-line equations derived previously.

In solving practical problems, the known (reference) flow conditions will generaUy
occur in .he of three locations, relative to the location where the fl(,w conditions are to be

established.

Case 1 : Conditions are known at an upstream point in the pipe.

Case 2: Conditions are kn_)wn at a downstream point in the pipe.

Case 3: Conditions are known in an upstream reserw,ir.

The three locations where the flow conditions are known require three different sets

of charts to prevent the need fi)r trial-and-ern>r solutions, in developing the necessary

equations, the location designat, ms will f_)|h)w that of fig_are !9 !O,

Conditions Known in an Upstream Pipe Ix)cation

The basic pipe flow equations are developed for the secti-n from 1 tf) 2. By a,_s-ming
various flow conditions, the fluid property changes between I and 2 can be computed for

selected values off(L/D) to pr,;duce the chart for case 1. As discussed previ :'y, tor any

assumed flow condition and piping _ystem. the properties of the fluid ::re fixed .oughout the

pipe and the upstream reservoir, if one should exist, regardless of the location of the known

flow conditions. Therefore. the data required it> produce the charts for cases 2 and 3 are

obtained by m.difying the flow para,nete,'s and ItuJd property changes to reflect the change

in the reference location front 1 to 2 or t,) 0. respectively. The assumed frictionless nozzle

of case 3 also provides the relation between the downstream static conditions and the stag-

nation conditions at the upstream pipe hwati_m. 1, In a practic._l problem involving a real

re_erw_ir, a s(luare-edged entrance would be ac('ommcdated by increasing the effe:'tive pipe

length parameter, f(L/D).
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!

I
i_

"]J
,(_) I i

I!

II tI
1 I

I I
L I

il
Downstream

F_ictionless Nozzle Reservoir

Filpmre 19.10. L,.ration designation for piping swten,_.

Proceeding with case 1, the equ'_;ion of state, whi_ h describes the state of the fluid as

it p;-ogresses through the pipe. is es'ablished by noting that the total specific enthaipy of the
",-an,,i,, -;._=_.onstant if the flow is adi_.batic. Then

'_) . I V_'__,_ Id _ +]dh=d[_g_/ _ _ du+d (Pr)=O [8.30!

Combining this with the pedect-gas relationships yields

k-I_,,.,,=-(-,.)d(_) 18.311

lnte_ating equathm A8.31) between lyfints 1 and 2 in the pipe yields the equatioT: of state,

18.32!

Substituting the continuity equati,,n and definition of math number into the equation

of state yie!ds the equation re|ating the fluid property changes to the ,_pstream roach number.

Combining with the perfect-gas law yields

_==,-[(_),,,]_(_-,i-,]_, _,,,,

18.331

I8._;I

An additional equatior, relates the fluid prt, pe,"ty changes to the frictional le_gth of the

pipe. This equation i,s the Bernoulli theorem, obtained from ,nomentum considerations,

and is written
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/ ;:' (; .... d!.d )- : ':" ,... -o (8.361

c_mb;:._ii,i_ _.f equation_ _'_.31). !8..'J12_. :tnd _8..i;_! and 'he :',,ntinuity e,l,,2qon yieht_; lh, _

folJowing integrable equati,_n

_" ['2k.e_Pl t, + (k - i [ _ dL = 0_k+l) -7-=- L . _ DJ,,

Ce,.,:Tyin_ out the inteia'ation and _.ab._titttlin_ the defin,li,ms of s_mic veh_rity and roach

number yield the equat_i,m that re!'_tes the fricti,mal ]_n_h j_L/D_, measured between the

two pipe Iocation_. t_ the 8uid properlie_ a:_d roach number.

• L 1 I-2+ 't', _ ' ""
[8.371

Equatieus (8.33_ and (8.37) can be solved simuhaw,eousl) to produce the charts for ea_ 1,

which consist of separate charts for each va!ue of k that is to be represented. F_g:*res

19.11 through 19.16 represent _he case I charts for pedect and real gases having k (or k0)= 1.0,

1.4, 1.67, 1.8, 2.5, and 4.0. Note that the mass flow parameter _b_ has been chosen as

[s._l

Comparing equalions {8._) and (_ 39t ,,!lows that tbt is merely a slightly modified math

number, made independent of !:[.,'b-= V_" ,_M:l]. This sclecti_n is made to provide easier

interpolation betv,-':en charts f,',r uneven values t,f k and ks. _'or example, for any value _.f

/¢_ tb_ needs to be calcula;ed only once and the charts drawn f,_r aii specific values of k can

be entered. ;_=-'intzthe ,:_me value of the. It can be sh.,_wn by cr,;ss-plotting the data versus k

that linear _nterpolatio,, between the charts for any in-0etween values of A yields g0,od

accuracy.
Lines of constaz_ r static temperature are c,,mput,.,d fi_r the case l charts by the equati, m

resulting fro{:_ a combinati,m {_f equations (8.34} and _8.5_; znd the perl_ct-gas law.

T,

P.: _ T., T,

d);
18.391

where {b is substituted for .I,!, of equation t8.39) in chapter 8. The sonic flow line identifies

the maximum or choked flow condition_ and is obtained frora equation t8.19) res_itten as

[8.401

(The above equation is a siraplifi .,d version of the original equation in oh. o.,"

376

®



v

0

.7

.4

tPPIIC.!TIq).%" _)F .tDI4B4TIC FRICTI¢)%.4L FLOg' IV PIPE.'_

.9

.92

.94

a_
.97

.99

992

•994

.996

997

.998

IFiiaure 19. I I.

.02 .03 .04 06 .08 .1 2 .3 .4 .6 .8 1.0

('._m_p_e_._ibh"adiabatic' fh,w with i'ri_'lio0_in q'_n_tanl-ar_'a pq_e_ ba_ed _n _'q,mlili_,ns
in an up._Iream piFe h_'ati_n. _ = l.O.

ORIGINAL PAGE IS

OF POOR QUALITY

377

®



4

CO _IPRENNEI.) G4,_; H _ _DBOOK

.9

92

.94

.96

97

.98

.996

•997

.998

.999
.01

Figure 19.12.

378

(:-mpressih!e .miabati¢ flo_ _itl: fri¢li, m in -,,;:stant-area t iv._., ba._e(| on :,,nditions
in all upsire;llll pipv Iocati,,n. /_=: t. 1.

._,_..,,-_L PAGE IS

OF. ._OR QUALrI"Y



r
4It

v

0

2

.4

.4PPI.IC,4TiO._ OF ._DL4B,4TIC FI_ICTION.4L FIOT I_' PIPES

6

.7

_L

.9

.92

.94

.96

.97

.98

.99

.992

q94

•996

° r

"99901 .O2 .03 .04 .06 .08 .1 .2 .3 .4 .6 .8 1.0
J,

Tigl]re 19.13. (i.mpre_it_le adiabatic fl-w with fri_tt_n in constant-area pi|)r's based on c.nditi, ms

in an upstream pipe hwati_m. /. = 1.67.

OR_I_-V_L PAGE IS
OF POOR Q;.L_LITY

379



mr"

0

2

4

6

.7

CO_IPRESSEI) G 4S H.I.%DBOOK

o.

.9

.92

.94

.96

.97

.98

.99

992

•994

•996

•997

•998

38O

•999
.01

Figure 19.1_.

.02 ,03 .04 -06 rt8 .I .2 ,3 ,4 .6 .8 1.0
J,

(_-mpr(-'_,sible adiabatic tl.w willl fri*'tion i_1 t'.nslanl-;irej pil."_ ba-_ed on ('-nditi.ns
in Jn upstream pipe Io('ati.n./,. = 1.8.



0

2

4

.4PPLICqTION OF .4DI.4B_qTIC FRICTION,4L FLOff IN P!PE.S

.9

.92

.94

•9o_

.997

•998

.999
.01

Or_N_L pA.r,_ 13

OF. POOff, QUALITY

381



iV

0

.2

.4

.6

.7

.8

.9

.92

.94

.96

Q- .97

.98

.99

.992

.994

.o96

.997

•998

999
01

Figure 19.16.

COMPRESSED G,4S H.4NDBOOK

.02 .03 .04 .06 08 .1 .2 .3 ._ .6 .8 1.0 1.5
W,

C,_mpressiblc _:diabati¢ flow with fri('ti, m in ¢.nstant-area pipes based -n ,'onditions in an
upstream pipe Iocali.n. k = 1..0.

382

ORIGINAL PAGE I$

POOR QUALITY



API_LICATION OF ADIABATIC FRICTIONAL FLOK" IN PIPEY;

Conditio_ Known in a Downstream Pipe Location

The charts of case 2 are plotted {'tom the data computed 6,r case I. except that the flo,_

parameter is redefined for the downstream location as

which is obtained directly from the values of 6_ by

/.ig'X

The lines of constant-temperature ratio ,,re obtained by combining equations (8.34), (8.38),

(8.41). and (8.42) with the pedeet-gas law and solving for (Pz/PJ; in terms of (Tz/Ti) and {b_

TI l ]1/2

p, (_)[8.43,

The sonic flow line occnrs as a vertical line on the charts of case 2. Since the choked

condition occurs at the pipe exit whrre the flow parameter d>.. is compute_t, and since M=

is unity, the sonic flow line is described using equation (8.41) as

= [8.441

The case 2 charts are plotted a.._figures 19._.7 thro:tgh 19.22 for perfect and real gases having

k (or/;.0 = i.0.1.4.1.67. 1.8, 2.5, and 4.0.

q

; L
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Conditions Known in c:n Upstr_,._m Reservoir

'1,, ,._.t,"_d ttl_..th:d_.t, h,t .t-,. +. _lu,+h .t{,,.,l+;i- t.,,., ,.-,.r_,,It d_+._l,I ,,t !},, pil,+.tt t-

, ,.l,_.+'tt,.slt t,. t-_q,tn," .t Irt,'ti,id+'-- ;+,.,','i+ .i, th,' ;,if,, mi+.l, lll,- it++iilllt- I}I," I_-_" ,.I I!H"

,.,.nl,+,i,lt If,,++ r,'l,lt.,,,.+htl,- t°, ,l,'t:_,- th,. t }i.l,+,'t-- +:; |_t':,+ir.tli,,. }'+<+'l_.+'+'li l+l+' II|'-' <," ,l!' -+'-+"r

+,,ir h..,;,,,. !) ..;,I th,, |)il,,i. mh.t _. l'h,--,, , hJrt..It," ,d .... Ol,l,li,'d,l,.+ tl+++.r+.t,,r_.+ l,,r ,',,m.

l)Ut,+lll,,n bt'l_,++'++rl !.,, pip," l,,t.lti,,n- +,+.h,.t, IM. tH,-tr+.,tm -l+t_.,_._,,,i l,+-l,+*rh+-, mth+' p_l++•

,.++" kn.,,+_,, l'h," l)q_+' mh't t,,tr,'-l;,.,l.+ _,, th, _,,+r+,h. thr,,.,t. II:,.. l,,r thi- -+.oti,,.. th,.

l,r,-,-+tl_,,, antl l+'mp_'r_llur,-" l+Ltli-- .i+r,,-',, tlt," n,, ",d," ._r,. ,,bhiil++',l ,fir,', it+, tr,,m ,.dta.lli,,n +H..'_)

ant| th,- l,r,'+,,,zd', th.riv,',l i..+.l.'n|r,,;,il r+*l,¢l+*,,l-|lli, .... 1 +',lU.Sli,,n-I",.._;' ,i_,,l ,.-_.]I;_+

,', l,,I ¸+, i ¸

+

+,+h_-r+"'h _'- +_,d+.+lilm,'d t,,r tl, ,,l **,l,,:Hi,,_t. ,8 I+7,, .m,l _H I,+)i in t hal,l+-r P,.

trtr ,'_i+._" }, i'.+ d,'hl,M ,i,.+

+,,hi_'h t- r_.l.,l,',l h, '5 l,,r lit,. I'_,';_tv',,m_' l,r,.','-- I._.

t l',)

I',,

' '+_+ F.

,\ 'L,

I .4n_ ,',l,,,,_i,,,i..+ +_. k:,+. ,_'{.I.+'+,+44. l+'h. ,tn+l ,K..-_I +. th,' ,'.i,.,+" ++, h_Irl-+ +,f I'_ i+'+, ._ntl T. 7+,,',,-r-u,.+

,+_,++ir,' pl++lf°.,! fr,,m +',_+" I ,l,H,l. _,,I,' lh,ll lh+'r," i- I_,, '.t',d m_,<'h nt_ml,+'r a,-+._,,,'iah.+l _ilh

<5+,. v,,|li,'_+ i'- _',a-,',l ,t+'_ _llt,,_lr,.,t+'_l r,'-++'t_++,ir <',mt+iti,m"_ ,+r 11_+' -IJ,'l,Jli,,n t,,n,lili,,n-, i_ ,m up

_tr+',,m pip," l,.a_i,.,_ I. Th,. ,._,-_. + +h_,rl- _ir+" l,h,tt+'+l .,- h_ur+'- ll+)i_+ thr,,u,'h I'I.2B l.tr

,,,<.rh.,t ,m,l r+..d _it._,'- h,t',m,_' + ,,,c + I, , tO. l.l.l.hT, l.H. _.'.3. ,m,l l.ll. l'h+' ,'x+tra _urv,.

l,,r /_I.!i)+ : I) t,,liH_., lh_ ,+p-_tr+,,ut+ r+.-.+.r,+,,ir <,,t.liti,,n- t,, lh_. +ip.tr,.+,tt_ l,iHt. _.t,n,lil_,,n-

]P: I',, I'+ I', l,,r t;l'l_, <tO. ++h.h i- .,I-+, +11,. r,'Idli,,n l,,'i'.,.+.,'n lh+..:a,_.+t++,_ti+,,i 3,itl -t_,t_,
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.4PPLICATIO._ 01, AOI..IBATIC FRICTION IL FI, Oll I'_ PIPES

The constant-temperature ratio line_ are _d:)tai_ed by combininr; e,,:Jations {8.;M,), (8.40_,

and !8.50_ and the perfect-gas law to obtain

r

,'k-I

, ,"T_', / 2k
{8.5._;,,

The ._onic flow line can be derived by sab_tituting into equati_a 18.lq_ the relationships

e* le,,!

x-K�

M_ from equation t8.51), and pdpo from equation iB.45)

p,-F- d_, ( i )

More eonvenien! fiwms fiw computing d_o,¢bs. and ¢bz can be obtained directly from equa-

tions (8.29) which are the convenient form_ fiw computing V/, since, in general, tb= V'_(M).

The only exception is that no real math number can be associated with d_,. which involves

stagnation eondit;ons. For example, if _b, = V'_(_'/0), by necessity.

Therefi,re,//0 must be the veh,city that would exist in the pipe if the fluid properties were that

of stagnation, Milch they cannot physica!!y be and co is the velocity of sound _,._tJic stagnation
cor.ditions.

For a perfett gas in circular pipe's and pressure in psia.

[8.55a]*

and. for d_, and tb, only

[ SCFM ,] [B..55b] *

[&55c]*
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["_Jr i_-t.perfec_ _.:._e_. _, aqd ¢b_ ca¢l be .i_|ain+'d hi 'er_us o| _tctu.d rale'_ ,d votimletrh" fl.v.

,+..+i;P+.:th:' actual s,+t_ic vt-h,cit+, of the gas c, l,'hdlle+| ill appendixe-_l.

,t

• ] \,,+,.ZRT
[8.53d] *

For ¢bo, ¢b_. and _b:, ht terms of weight flow rate

+( %
and when written fl_r circular pipes and for pressure in psia

6 = 0.2245 (/,_)w ' V'ZRT

( scv"vi

[8.55t'1"

18.55_1*

The properties in the preceding equations must be th,v+e existing at lhe hwation for

which <hin being written. F'or example, writin_ equation '8.?+5t_ sl_ecifically for 6t is

6, =0.2245 {n--5-' t _/'Z, RT,
\,pil)e!

i_S with the real-gas maeh number, the use <d the real-gas value _,|" tb obtained by the

use t,f Z -r c,, is only a partial compensation f,r th¢ real-gas effects. The flow formulas anti

charts must be entered with the isentr,,pic exponep_t ,_+,,brained from the f,dl-'+ing equationr,

using tbe actual sonic vehwitv data or thermodynarr ic charts as describ, d in chapter J,

EX+AMPI+E PROBLEM 19.2

I_, ' t"¢+ 2 1(+)++j
A high-pressure ;ransmission lime is to +upply nitrogen tt) a ;+fessure ,_ gulati(m station

fr,m a -1.0(_)-psig. "tie F. storage b-tth • at a <tesi_n rate of:S0 ,)fu? st'fro. Th, t_+tal listance is it3()

feet. and the liu + will contain ten 90 ° elbows aod tw,+ Y-pattern g! _,e vaN, s. If the stati+

pressure loss in the entire line is n : ,,, exceed 10 pe.+eent ++:+tn_. upstream t+r,++.+.:u.+:at the

design flow rate. determine the optimum line size.

*Thi._ equation <io+'-.; n,+t appear in chapter 8.

398

+ ...... .



4-

lPt"l,l(: II'HI.Y ¢IF ,4DIIB..tTIC #Rt{:"Fl(_ fl, FLOg IX PIPI%,

_OI.UTION

The chart for o5,, will apply because _,f the upstrream reser\,,dr, and

-- _ 0.90
_,1 u '

_'ith the overall f, ressure loss as Io_ as 10 pereem, the e!b,,w-; and valves can De aec,,unted

fl_r with suthcient accura,-_- as equivalent lengths of pipe. or as h l,ss factors, added !_, thv.

f(E/D) cq_npuled for the straight lengths of pipe. Then from table 3.2 tch 2,). the equivalent

lengths are 30 diamet,-_ for standard elbov, s. tip to 175 diam_:ters for Y-paltern globe vanes.

and .f(LID) is 0.5 h,r a square entrance.

Then the total equivalent length is

L 12(100) 0.5
k 10130) +2(175)+--

O O f

which is seen to depend _m the unknown pipe inside diameter, requiring thai D be initially

assumed here and checked later against the computed value. The friction fact.r is ohtaine,t

from figure 3.4 _eh. 31 as a function .f the Reynolds number. _,hich i_ also dependent ,m

the unknown diameter, and a value must be estimated. F,,r commercial steel pipe. figure

3.4 teh. 3) indicates a relative roughness of 0.00015. and if R_ is in the rangy af 10'L/ -- 0.Ol-k

Then assuming.t is 0.01 :_and that a pipe is t,, be used which has an inside diameter ot"2 inches

i L '\

./ I j) ) :_ O.O14t 1.250_ + 0.5 = 18.0

Before the' 6 chart of the direcl graphic soluti,m ,'an be entered, the isentr,,lfi, exp, ment

musl be estimated for the real zas. _t 7() _ l" and L015 psia. figures (22 and ti.(3 talap. (i)

yield Z = 1.12 and c,, := ! ..38.; ft/sec.

[qy equation t 1...i

/._ = 3.1,)5 [ (1.585,: ]_ l.12)10.552)(5.3)

-= 2.38

).,.., atFnterixtg the _h,, charts _d' figures 1().26 and I' '_-

and at P.e/P =t).9!). which alh,ws 10 percent pressure loss. a _alue ,,t' &,,= 0.10 is f, mnd t,,

apply f,_r any value _,t" k. between 1.8 and 2.5. Then the reqtfired pil_e size D is obtaim'd fr,,m

equali,m i8.55;0, solved f,_r D'-'

J

I) _ 15.21 _I-(XX)(4.015)(O.IO) \' 5.5.2
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4_ = O. 10 \ :2.30 !

= 0,_Y94

l'i_e viscosity, t'rt, m figure (:.5 lapp. C_ at 1.0_) psig and .;30 ° I4. is 5.7 × 10- ; Ibt-sec/ft 2.

by equation t4.14)

1.037)40 000

(2.30)t 55.2) (5.7 x lO-:)_32.2)

= 1,78 x 10:

rher:

rhe friction |'actor, from figure 3.4 _eh. 3) at a relative roughness of 0,00015 and R,,= 1.7_{

× 10 'r. i.', 0.0!29. Then. as befi,re, the fricfi,,nal length is

t _ =0.0129. 2.30

= 15.62

+-10(30) +2t 175t i+0.5

Then from the do, charts at ftL/D_ = 15.62 anti &u= 0.094

P2

--= (}.')22
P.

f;,r k,=2.3, interpolating between charts far k_=-- 1.8 and 2.5 The tem:,,crature ,!haoge i.

negligible as reflected by (T.,/T_b :: 1.0. The pressure Ios_ will be 7.F f,:,rcen! ,,t the Ul,-

stream pre:_sure resulting in a d,,;vnstream .'--'talic pres>, r,' of

p, = 0.922!4,(ll 5i

'_,,Is_,.the static pressure lo:,s is
Ap =I), --P-'= 3!5 psid

I':XA_aPLE PU_mLE:_ 19.3

Determine the static pressure and temper,,tu_'-e ¢'hange (hal could _,:. expect,+! if the

2_/:a-ineh _nominal_ pip,+ size had been sel,<';'ed in exa:nple problem 19.2. Also. de_e:min.+:

the math numker and velocity at the upsttt-am apd J,>wn_'ream pipe locations.

_Ol,t TION

The inside diameter of the 2V'2-im'h pipe _,:_ l;,und to t.* 1.771 inches. Then. as before

_00

;.ihR_) ! _1.12,_530id:, =15.21 11_)0_4015t11.7.1_ \ 35.2

= O. 15P.7



|t'PI.HII'I_, I)1. tDItb:lrl( FRICHrt%II. 1.1_ I% I'1t'1..,,

R.. = t o._7 J 1.4)_IN'_

= 231 ",, Iv_:

R .... 2.:_1 '_i 1t): Jnd ¢II --f) (_)I)15

figure .l. _ ,,'h. :h ' ields t :, t).t)128

' 1., i 12,Ii_))
-/i)'-}_=()t)i28[ i.771.......... _ II_;_l)_-_.' I';,.*t)..';

= 17.3

Entering the _b,, _'harvs for k_= 18 and _ _ at _b,, t).1387 and tdL/Di _" 5. vieht,_ b, in_.,9_ "= :: •

te,l.-dalion for /_,= 2.;_'4

P: T:
p,-] = 0.720 and _ = ()._Yt_

l_: = O.720_.1,015J = 2888 p_ia :: 2873 I*_itt

Al, = If)l; -- 2888 ::. 1127 p._id

whi;b is 28 percent ,,t the ,_,,.tream ab,;,iut¢, prt'_,';u, '. I.ike_isc the ,i,,wn,_tr,.a,n t:.mpera
*llre is

7_.= 0.'_ ! 53() _ :: ._22..5°'' R = 6_" ._'_ r'

The temperature change i,, th,'rel',,r*" -7.5-' F.

The conditi,,m_ ,,I the pip(" in,t; 1 whi(.h i;I l_'li_, case i-; lust downstream ,,f a ,qlHarP
pipe entrance havin,_, an cq,:i_al-n lt l,/Di = I).5. is read directly fn,m the ,.b. chary at/,I./D_

--0.5 and ,:b,,= ().15,q7. N,qt. !ha_ _.; ;he I,,_pressur,--dr,,p re_,,n-; ,,f the t'hart_, the d.,w ,-_
essentially inc,,,mpre_ib[_" and rh_. i,,_uh, _re ind .;renderer ,f/_.

Then. by equati¢:n _8.51:

, p, ,.'-:

.... 0.1_5
:; -! T,,

:= O. 1613

I). 1587 __

IOl
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_p,j;"

Ih,. _,l',_,' ,1 ,

p, qtll- } ,|t|,_ '

[b

t' t' _ '_

I' P. l_ Ul_l

l..

l , tl _1,, _" , _ : I :,u

7".1

I "

"1",_" d+,_._,n-,Irp ut_ I,_,'.lls:,;_ .2 + ,m,hli,m_ .11," ,,bl.lln+',[ dlr+'_ tl _, ll,,vn th+- ,.._,. ,h.ltt...l! rh,- -,.Imv

_l,l,. ,,t I', I'+ ,_7;_ uut tt_/.ll_] .. l'l_ F,,r /,. _'.'g #iz.r,.- 1'_ I" u;,I l'lld _..I,I

l'h,..

I'}l+" _,'].,_ iI_ .il I .... li',,,ll '2 ,-

,:,. n.221

A. tl __ I

\ t \ ._ ,,

q_ | ',.,

.... i + 1 '-i "4 "_+)') 11..',2\ '2._*._,.._1 , i_._.'_'_ -_,

It -h,mhl 1-" n,,l,',t th,,t lhv ,,m,llti,,_ .... mlH,l+.,I I,,r 1,,,':,1l,,,, .2' ,,r,. al,l,r,,'_imal,, t,,._ .,u._,. ,dth,.

_ h,lll_t'-, ill r_',li-_kl- .'t],'+ l-_ th_ll :11"," :1_ 'll,lih _',_p.'ri,.n,',',t ,,v,-r th," V, ld+, prv-.urv r,m_," ,.n-

,minh.r,.d. I",,r ,-_,,imtd,.. ,t_ lhv d,,_,n-lr,'lvn ,,,nditio,n- ,o,tnl,ut_'d a._ t':-: 2pd2,p, |_''i,I ,11,']

l': : 322.3' !{. lh," _.ll,l,.- ,,t Z. , ,..rod ,( ,an bo' +'_.tl,_.m',l ;_., I1_. I 1.2.-_ It;-,', . and 2 I).',.

r,..P+',li:el;, i'h+'-+. , h.u_e_ tr-m II_e u|_.lrmlm r#.-,+.r_.+,ir ,',,n,liti, m ha_+' n,,l b,'en a,', _un!,-_l

1,,I" ill th," _lll,l[_,'_i_..H|4'q" lh+ !ll,-tr,'_IH _..ihl_._ _,_'f+" II.._.d ,i-. _,ql.q,ll,t-, |'h,' vrr.r +an t,"

ll'fhl _+ +-d il,+ ::i,l)i_.il'i_, 1ii+. ,ll1_iI+,+.l -_ t+, -h,,t-t -l'_ITi++'f+i .- ,,t 1}I_'" l_i[_+*i+ll+P" il",+ll1" r+',',,nil,uh',i l,'.d._.l-

,,+l]'-.lJl11- 1,,I +',I+ h -+'_m+'h!. Ill 1|+i- ,.x+,:tll,h'. thv ,.rr,.r , i,t [.,. l,,u,M v,, t,+. alm,,.t ,w_l.mibh'.

®



+_"/'IIf Illl_+,_Jl. {l+l(lctllt Fl*_Irl'ItJXH +_I_JU /_, ,'/I'I'_,

ll,,+.,-_,+.r. _,h+',' h1,'i1+.t pr,.+-_i_o..+ +t,ld h,_.h,'r ,tl.1_ !I f_umbo'r. +r," ,'a,o -+l.t_.v,'d. th,. , h,i,_e,.. _r+

+,+ ll._,i- + ,,11.I l++_l. , ,Ill be', ,,file' t,|tl+ 11 ,ll,,rt..l_.,|lll+ .+111..li+._ Ill°..,._,_,._l,.d -, t,at_,,,_ .h,,_+',,l t,+.

I'+P+I |,,r _l+",ll+'r l_ , liP+l('+,

CHOKING DU| TO FRICTION

I'h,' _'+t_l,,,. ,.gu,lnJ,,n. iml,hr+',t _tlld,i .... hxtl.,nl- d,-+0-!,,i,,'d tft IF,,. pr',.+.,I,. I+trl_H,tn-

*It+'*+ lt_t+," , ,,HIpr,'._-+.?bll • +_+'|,t" t_,,_ tlllt ql,'t'- it,+! °'Xq'+r'+'l+ f_l'" Fit IXl+t_ n,+l ¢h..,,i+-nt, i, rift-. I+,; i

ui_+,.l, |,+l+,tnlx¢ ._,,-,t,+n,_ ,in++,l th,iI t|,+_,, roll,t+ Il i.+..lJ .... )l,.t+ kI,+... \ .i_+_,tn-+ t h,+k.l_'i_ |.r,,t+-,+ ,-.+ _.,l,-

++..t ll,,v, l',It+"+ ln+l,il ", t'%l *','l|Ifl_ '.,,111," ,nnJ%,nlitlnll r if,.. all -,]|l-,,lli,' It,,,.+ ,nd ,'.I_1.,+" .,I_,,+ k ++,,+,'*

h .... +,'_:r i. -Hl,O-t+.,,n_, I|+,v+.. I'h.'-," , ,,mld,"_ t,,r'., ,",',.'- ._++",h"._+rd-',l _n ,I.'_ t+t ,. , h,ll,h':
t_101++nil tl,,l b+" rep,.at..d h+'r+. ",,_n_+"pratt|,,'41 a,t.'_r., Ir, + ,h-,+.'+_.+'+|_n Ih+. h,ll,,_m_ p.ir.l

mr.q,h. +,.ith ..'th,.t., ,,t ,-+a, +,ti._: tl,.+^ pr-bh'm.+ th _t :t+,.,,Iw- 0!.,kirnm

Subeo_ic I%w

In t|e',+il_.;,i_ .I l;iPin+c ,+.v+trm f,,r *ubm,nw l;,,w ,,,f _+t+,mpr+..+..,bl+"fluid*, il +. l.,...+ibl+" h,

'+l_'cify a |)il_" .iLe +_m| h'.Icth and + llo,w rat++ that |'.ran-! I_. r+l,v._i,'all+ a+-h.-+_'d _,+,.h a

+ituat+,+n i+ i+h'.t+hrd _h+. the pipinl_ ,,p_+t.',n l'rz_'ti,,nal h.n_h ' ,I.'I_) e,,.('+'+'d+,+|hl,- Ii( ;.m,+l_,l [) ).

<',,rrt-,|m_tlt|ill_ mith tln," lh,w p+.Iranlt'ler l*,nli.h d,.._ I,I ,,r <_) t+'-ml.ltrd It+,r dli ni|_tream l+.',.lhm.

The m.,ximum ib,w ai_d/_,r ma_imun_ It-n{4lh n+a+,l I'_" iilentith.d .*in_ the" _'hart -I +tlt+,llrr lt).H

.r the" ,'h+,krd tl,,_+ li,le,+ ,,f tim.re,+ It_. I1 thro,.,,h ll_.;_H, If .+.<'h a i|o,+ _-,,nJiti+,. _+er,. ph_.+i-

_.all++ +tltt-mpl_.,|. wnth fi_t+.d t,t,',+lrt'.l,m fhlnd 4,,mblit+,n,+. _h+" ttt+,v+_.++,lid t,, b+'n',,m+" _h,,k+'J
4,_d re'ache,+ :l max|totem value le_+ lhan ,,ri_cinall_,'+.+pr:ifi_-d _,r ,|e-ir.-d. Th," r+-dm'+-d tt,,,+

rate al+_+l It_ a.,,+_+,m'htcrd r_',hl_'t'd ;ip.+lr..am l|,,_ |_aranl+'t¢-l'* (|I ,,I _ ',,rr_..+po,ml with tln+"

u,+ml.lted _+ahl," ,,I' ! i I. 'I) + |,,r ,It+. pl|,+-, whh}i ,.+ m,w lI l.m.,,J ). aml lhP t_+l,m i_ ('tillkPt++ I+,,I1i(')

,if th, I"1" ¢';+I 1"I." r,.,hl,,'d 11,,v+rat+" ,'+In b," tl+'t+.,mm,'d Ir+,nl Ph," t+'h.nrt.+,,t'/<l.,,+,,,,/lJ).

,,r lh+. @ _'hart. ,rod tl,,- d_.liWlt,,,n ,,f tin,. tl,,+, p+tl+.tui+.++'r 1.1+,,r d)). +.q,n.lli,.i.+ iX 2Ill .ill+l( (_ ._._,.

"1 hi" prt'l'rdil1_, +-,_aml'h" pr+',+lil,p,,+t'+ that tin+. ba,'k l+rt-'.,_,llr<+`.It th," I-p+"e,ul ,.+ .+,li|+t+',.'+Itl+

I+,+ l" |l+"rllli| the 11+)w It++.l_-,'l-l,.rate t- +,,ril' "+,'h+<'+t_'+ "l'h," r/'t+lIl{r,',l b.li'k pr,.-++llr," It+, pr,-hj,'o +

4"ln,,kitn_. _I,.. j. ,d"+,'u|,'i_lih+',l l:v tln,. ,'h,,k+'t+i II,,+ Ira,'-+ ,,i' tln," d', _lHrt .... by h_.r+' I++I.+it

th+" r,.dm',.d ma,ln n_:'n,bt't

411,,,t++.+I,I,,v+ ,'a,n al+,, b+" _+h,'+,+d I,+ red.<'i.m It." ba_k pr,-._.+,Ir,- t+,f .i l+il'+t_i._ ,v.+.,t+.'tn

_Intil I|I+",'h.ke,lt+',,_+diti-ni,,+_I,'hi,',.+'d+It_.,m_+rt+.;i.,+.d,1.+wr_t,..",_.Indn it+wr,.a,.i_i_lh,_,

thr,,.,_InUt.2_. IP,_,k-pre.+..+.rei+-d,wtiom..+b+'l,,wth+",'}i-k+',llh,v+_,,d_.'-++,,,'ur,,.t.+id+.tl.'

pip+"Ull+n,|,'::.,I'., n+, f_,rth,'r _-han++..+ within tilt. pipe.

Supersonic Fl_w

-+n,i)+.r_.0:ni,L lt,,+v inn pip.., i.+ relativ+'l', .n_',,mm,m+ and th," h_.havi-r _an de_.iah" _-,m-

.+id,.rably t'r-m the- th+.,,reli_'al |,r,'di,'ti,,m+. Thi,+ i.- primarily ,h,+. t,, the f,,rmatit+,. ,,t' +i.++_,u.+

|_tm,lar_, - l:iver,+ "I., ,li._-ti_+._ed i_i d,.tail in _'hill:tPr 6. ll-_+.v+'r, i! i.+ +n_p+,rtanl l,, nt++le ,.+,,m+-

,d the ,.hara_'lt-ri+ri+ .* ,d ,'|+.,kink ill .+tlp¢'r_t+,ni+- f|,,w.

+up+'r.+,,.i_" l|,,w inn pil.'._ i_+_,t-llt'r_ItJ+ prt+,du,t-d hy .In ,tp.,tr<+-an+ i',,nx, er_t'rlt-d++e.r_t,r+t

m,_ll+'. ,,pe'ratin_ mi_h a l,,w ba,k |)rt',.+...++llrt'i %,I +mp,_rtant dil_r+'r,+-'nc+ • i,+ that. +_ th+" .+nil..r-

._t++t.h+'a-+e. th,. th,+s rat+" +. + i.+ <',,ha+taint. ,I+ _',,.tr,,tl+'d h_, th+-lJp_lr_'-<i,"+11<',,n,liti,,n,_ +_nndthe

+i_e ,,I the" ,'Ino,k+',l +',,n.+_.'r+,'nt-divt'r_+','H n,,_.zh' up,_tr_.am. Tht.rpfo,rt.. tin+' llt,m +',,ndit,,,n-+

.Jr,",l+'fi_n+'d b'+ :I -in_l+- F'a,m,, tin+'. "- l,_ ,i_ th+. b+l+'k prt'+_._+r,'i+ ttnaintair..d h,+ ,'.,,._tl t+,

I._)._
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+ +_ttl'l:l_'._",l.+l_, +. +4 II IXlJl.;,'+++I_

,'i1,,k," {h," _1,,z+_l+' (:,,ri,++.,luentlx. th,. _+,,m ,'el ,,I _'l,1,,kJrl_, ,.+ ,_h+..htl,, +ilfl,.r,'nt +:_ ,.+.l.ll.'_,Pr.+,+,ttll.

t|i,,+ .ilt+l i- .i_,.,,,tl,itt+.tl _,ith tit,. l, era,it,,,,; 0,l it,,rll;.,l ,+h,,i'k +a_,+"+ '_.+|+ttlt |h¢" l)tl"t +'+ l'+.lthl+l"

th.|,t ,I llm|t ,,n II,,_ ru_t+, .tnql/,,r |)tl,,..' l,'t|mtl| ".h,,,'k +++I+<.._+l'aft _t,_+- ,'.+IU+l.-d i_,_,++.x t".P.,.+.-+l's +. Ib.lq'k

pre-.,*t,tr+, +,r eq.t't'+_IS+r + _+I+I+L+I+' l+'n+,th.+. ,_r h,,th. %_I ir.Jp,,rt+..tt ,++mil.lrlt+_ t,. -.tilt.,,,n+4 ,+I,,+ i'+ tlt,.

,.tt.+tr'f|t+. 4,1 _n m.|'_lltttlm pit,°" l,.tt_th at whH-h tlt+" rl,,vv ',+t)l be'<,,.++" ,+0_rt|q"t LI : t ) ;_l the' ex+l

v+ilh ..+h,,+'_+]t.'.,,,..,H,,v+.

It the pip¢" Lt'ttglh t,+ l+..,,, lli,irl I+.,+,.. a,.+ it|er|lihed L,'_ ",,,m," up,4tr,.am It,eve t',,n||il+,+n,+.

if,| It'+++ ba,l,, pre.,...+llr+. !J,+ t,,+ It..+-, th,.1 llt.lt _,h0<'h _+,II .'at|.,. _t _,,,r|n_il .+h,,,'k +.It th," [)it++ +. +"Xit+

tlt," H,,m l,r,.'-'-- mill p,',,_re,,+ l,, th¢. l,ip+" t+,Ut ai,.it_, ti;+" ..+IJpe._:.+l,itll(' l.)+.irt It|" .+h(' F'allll4t_ lilll..

Pit +"|t,,ll.k l}l+e,,.+,lltll-e(+a.l |1++"etlll,ll It,. It'.+,,+,lha||. ,..li,.:htls _rr'+ltl'r thatt :he. l,ip,'-_'xh |)r+-+-,tllP.

Fh," h,_h,'r |,a,'k t,,+',+.+.r,. I',, reHuired h, pr,+dti_'t" .I ++,,rmal .+|l_,t'k at the:- ¢'_,il _'a+t GP i,l¢'ntil+ned

lr,,it+ l|t+, n,,rmal ,+h+m-k l+tln_.ti+,n+ ,+I",'lt+pler 7. W|l++'l+Ylh+" ti[J,+Irean,+ +,,m|ili.n+ t are th++mt.

t|e+l rlbl,'d b+ the l"alln,) line at the pit+ exit. Th+-n. milll I,-:. l.m., _. and tile |)at'k pre+,,+ure

It+,.+ lhan Pq. the pil_' d,)w i+ elr+_t'rib,Pd by the l"arln,, line. anl| the" ll,,w leave+ the pi[+),Pexit

al + -+Ul_'r+,,||+," veh.'ity II+111+-back !)rP.++urP i+ P/l. l)l" peat+.r, a n,,rmal +h,-'k +tan+it +l:_mP,-

where in lhe pil.)P _l:+i_|in_ the pip+" inh) r+'_h_n+ +d" +ll|N,.r++t+ll+l. (up,,+tremm) and +ub.,+,mi<"

ld+_wn,+Ir+-+_ml Ib._,. 'l+h+̀ pilm'-_'_i: pr_'+++urP i_ _w _'qtoal t++ ;!_,. ba('k pr,t-'..++ure. _+in<'e the exit

,+++'h,<"ti'.+ _r+" +ub._+mi(', In_'rea_+ic_p£ l)a_.k peP+turf m.w._+ the n+,rmal +h,,<'k up._tre+m.

The l_+,m pr_._.P.++ _.+r. I_- an+_Is'_.+-+!l+v u.+ht_ th,. <'l_rtr-_l q_,r t_lmlat+-<|) l+'+mn++,-line +.quali, m++

t'_r the .+t_G-+,m_t"a_,d .+t_l_r._,m<' ."r_.i_,n'. _md the n_+rm+_l ,+h.<'k i'un_'ti_+n_+ ++f <.h++pt<+r 7 that
<|,-I_- the ('h+Jn_:..+ that .+._.,.r a_'r,,++ the .+h,.'k year+..

If _l;.+" _.,tlm" len_;lh i+ ,_Jreal+'r the+,. /._... ,+ rt+,r_,++_i +h+,_'k m_l_t exi+t at _+_,m+-"up+tr+.;_m

|.It+, l,.'+|li,_n, re+_r||IP_+_+ _,f tile b+.l_'k |)t't+.-+.+llrl-. '+,+_ lon._ +.I+ th+' ,:++nvPr_tent-diver_Pnt .,+upply

t+_,+zh, r,'rn_li_.+ , h,,k+',l. rh+. th,+ pr,,++_.,+. ,.+ .till _lPli,..+l h_, the l"+llrlllai-litlP +.tltl+iti++l,m ++,+r a

-.mmh" l"+mn,, I,.+._ ,._d the. ,.,rmutl .+h_.-|; l'um'ti_m,+. ]f lh++ b_t'k prr'+.+urP L_ _tr+.at++r tha_n/)*.

the. p|p+. ,,tnll+-l H_,,_, ++ill h_..+||b_++,.i_'. ++,ml th,. _-,_it prl',.+._o_r_. _++ll .mt_'h oh++ Ix_('k prr'._+;tr+'.

If the" l,_'k l_r<-'>+,_tlr+• +,_h'+-+ lh.m P_'. lit," ,h,'_.n.<tr_+.;tm +.llb+4t, lli<.' HI,_- will |)I'(*,,ITIr. ,'h,,k+.'d _ith

-0,_ta<. v,'h,<.il_, ++'_l_lin_ at the' +'Xit. In thi,+ ,'_t._+'. the" +'xp.tn._i°m lr,_m tit+ + _.,+p+..p._+t [,r+-'_.+lJr+'

,,f I _'++t,, tlt+" I,+,, k :_r+'_s,_r+. ,,('<'_r_ ,+,,t._i<h" the. pip+'.

,Jr"

)(rl.
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CHAPTER 20

APPLICATION OF NONADIABATIC FLOW IN PIPES

f

The three m4,st important types of compressible flow through pipes with heat exchange

are analyzed in this t'hapter. The least complex is that of isothermal flow. followed by

a flow process with simple heatin_g and negligible friction, and finally the most complex
flow involving both friction and heat transfer.

ISOTHERMAL FRICTIOtNAL FLOW IN PIPES

Isothermal flow can be assumed for long pipelines and low roach-number flows. For

sucll cases, the ._mall amount of i::-at transfer required to maintain the flowing gas. at the
temperature ,,f vhe surrounditt_ can be assumed with atrcuracy. Although the low speed

,ff such a fh;w causes a tendency toward incompressible flow. long frictional lengths cause

large prt.ssure h,sses and large associated density changes. The flow must therefore be

treated a., compressible with essentially constant temperature.

Governing Equations

["or isotl,ermal flow (c-n,qant temperatureL the perfect-gas law and definition of math

number can b_. written as

_' _ dy [9.: I
P 7

and

&l'l_ dVZ 9/dV\
":1_-= v-_--- - IT- ) [9.21

The ¢,mtinuity and momentum equations written fi_r adiabatic flow in chapter 8 apply un-

changed as

-_-=- \ t""I Y 19.31

and

325 994 0 69 2":

_--_£) = 0 [9.4}

.I_)5
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Equations (9.l) through (9.41 can be combined to produce the following explicit relation

between the fricth)nal length and math number, whi,'b can be integrated as follows i,,

dM _ I kMZ \ (d_),_I-Y = _) f
[9.51

It should be noted before integrating that the factor (1 - kMZt identifies the choked condition
_where the factor becomes zero) at M = 1/V'J_ in isothermal flow. This is in contrast to adia-

batic flow where M = 1 at the choked condition. Integrating equation (9.5) between the usual

limits of a variable upstream mach number and pipe location where L = 0, to the location of
choking where M=I/Vk. and L =L,,a_, yields

(L__) l - kM z lnkM 2f = kM _ t- [9.6}

Equation (9.5) can also be integrated between two arbitrary pipe locations separated by a

frictional lengthf(L/D) yielding

(L) l-kM_ 1-kM_ (M__l_ [9.7]f = kM_ kMZz t-In \M_,/

By combination of the definition of mach number wOh the perfect-gas law and continuity, the
following relation between pressure and mach number can be obtained for isothermal flow

P__2= M__22 [9.9]
P2 J],

Equation 19.9_ and the definition of the flow parameter 6[d>_ = "v'_(M,)] can be substituted

into equation (9.7t to produce a closed-form equation relating the flow parameter and frictional

length to the static pressure change with isothermal flow.

F /'P_: 7 ':

w L '-tF,j _1
[9.111

Equation 19.11) can be used to predict pressure loss with isothermal flow of any perfect

gas, regardless of k. The solution is found to coincide exactly with the direct graphic solu-

tions for adiabatic flow of gases having a specific heat ratio of unity. Therefore, the _b_

chart of chapter 19 plotted for k = 1.0 can be used without approximation to analyze isothermal

flow of any perfect gas when the upstream pipe conditions are known.

Equation 49.9) can also be substituted into equation (9.7_ in such a way as to eliminate

M,. The resulting equation relates the pressure change and frictional length to the flow

parameter written at the downstream location.

4O6
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/ p,+ •

.... .....
g" ' -In

[_._21

As with equation (9.11), this equati_m is f<mnd t_, c<,im'ide exactly with the dire,,! g, raph}c

soluti<,ns for adiabatic flow for gases having k = 1.0. Therefore, the d_., _hart of chapter 19

plotted fi)r k = 1.0 can be used without approximation to analyze isothermal P.ow of any

perfect gas when the d,)wnstream pipe conditions are known. +_ number of more practical

forms useful in computing 6 for pert_et and real gases are presented as equations +8.551

in chapter 19.

Although the compressible flow from a reservoir to within a pipe entrance cannot usually

be treated as isothermal, in the low math numbers generally required of an isothermal

assumption, the temperature change in the entrance is negligible. Therefore. it follows

that the adiabatic ¢b,, chart of chapter 19 plotted for k= 1.0 can also be applied to low macb

number, isothermal flow of any perfect gas.

Additional equations can be written in logarithmic differenti'aJ form to describe the

changes in stagnation pressure and temperature. These can be combined with equations

(9.1! through _9.41 and integrated to produce the foll,,wing relation,_hips that refer the changes

t,_ the conditi,ms of choking (superscripted ** in isothermal flow where ,1I= _14"*= 1/_).

,,[,1 [,+
T,, k -- l

Since the ('linked flow cmldili,ms are fixed in a given fl,,w pr,_l)lem, the. t'hange that ,wt'urs

between any tw_ locali<ms can t)e obtained by taking ralius _t' lhe parameter evaluat,_.'t at

the tw_ hwatitms such as

t',+, [ P,,

J

Required Heat Transfer

The heat that must be added between any two, p,dnts t,_ mamlain the isothermal cundi-

tion _s cumputed frum the change in stagnation temperature.

Q; ._ = ,'t,<T,,.,- 7",,,! 19.201

Substituting the stagnati,m temperature <'hat;ge (obtained b_ the met[l<,<_ I <tes('ribed ah<,vel

and equali, m q9.9) (t,_ eliminate the ma('h .,+umherL the heat trat_st'er required is

I-(17



and

cvTo,_ /. _-- I [_.23]
__. q-_____

where _b i_- substiivted for .U ,,f equali,n_ 19.22) and !9.23_ in ('hapler _. Equali,,n_ _9.221

and (9.2:]) apply when the upstream and downstream pipe c,mditio:ls, respectivel+v, are

known, and the nece,;sary pressure data can be obtained fr,,m the <h charts of chapter 19
plotted for k = 1.0.

FMICTIONLESS FLOW IN PIPES WITH HEAT EXCHANGE

,.-|)t,h'. r,,mpr+,+,+,:+::. ,. ' _,., +':.s v, ith !;:+at Ifansfer an,l no lricti,+[, i.', sehh_m attained.

Ht,wev+-r. tire i-nditi.n can b+" ,_++pt_.... " 4 when the heal.transfer rate is high and the

pipe length is r,'lativeb, .,l+,,rt -,+, th<it the lric']+, .... "-' :,., r._'.,z'iigilAc relative h, that
+_t"heat tr_ns|i,r.

The Rayleigh Line

just as the l+'ann,., line descriBe_ th+- adi:d_<ttic t'ri,.-tiona] th,v+ of ,_:nl_)r:'s_.ible fluids in
l)il)e_,, the l{avleigzh line des+'ribe_, the thaw with 1_ at trans!','r in the ai,,em'c of fri(ti,,n

_simple T,, chat+geL The hnpulse fttmthm teq. tS.(_t_+_ is +Jc,,n_,tant it+ c,mstant-ar_'a. |ri<'th_n

less flow. (]_,n++l)init+++this ftincti,,iv with the t',illlintlilv equLllioll _,iei<Js ItH' R+|yh>igh-lh|,.
eqtl_ti,+lt

],+)+++!Z.....r+++ .... ('<,n:_t all! I').++t
g,.y \+_'_

The Rayleigh !i:+e can I_+,i)hntt+d ,m an h-s di_+zran| in the ,,ame mannt,, at- ttw i"anm, line.

(+i.'e again, tit+' p,+int <d maxinitHn enlr-p> identifies the i.,int ,d rh,,kin+ _Iwre 11= I.().

_+,_¢. u!)l++.r liOrt,.ri _d the curve d,-,cribes the subs,mi_ l".,w pr,>_'ess, und the h_er p_it'ti,,n

des_'rib,+s the ++tll,('F_,,_ilit' ttIFi_,. Ih.atin+ iirlil'e-.-e+,, iS,Ih,w th<+ lines t,, the riTht <incll,asitll.A

enlr,,p) and t'_,,tlill 7 tir+_ct.sses loV,aid lrhi. left +decrt'aSili 7 elitr_,p'_.), tS+'e fiT. 9.1. _ls. qi.l

Governing Equations

%" in previous derivations, the relati,lnships defining a perfect-lzas, tnacli-runntwr. _nd
IIic stagnalioll liroperties are (_,mi)ined with tile ('ltitser_ati_lli [_.t_s +,|' mass. lll_ll_lenttitii. :+lilt

eiterg.), i.vrillell h+l _t(N.<lrd;tll(.i <, wittl the houndar) c_ndili_,n,_ _d+ lhc llr_>hh 111. Thus. it i,,

p,,s.,ihle t- write lhc eqiiltii,,n_ in hlil+graled f<_ritt 3i the iv+,, l/iti_, h_caii,,ns +,t+intcrc,_t. Sinull.

tallelilis s_diiii-n _iehis tilt" f,,ll,_wing rt,lalilm_, hct,_efql the |hiht ltr_tpertie_, and the lii_t,'h

nunil_t.r at the two ]_c_ili_Ul.,,.

i



11't'IICI!'1¢_'_ OF _,I_,tiH IH-ll'lf' KltJg [_ PIPb_

F:_ J 11,tl -_ k.ll::tj:

y: t" ( _t,,_:t,j + ku_t

.s.,- s, ' $1.,)-' ,l+k,'_l_x_L_ 1= .....
Cp , ..

lq.:_ll

i k--I ] _

e,,__= t_+k__,_,_+(_-) :,r:::,

P,,, _ l + k Tl.-',l + "--2--

!9.32!

_r,,-_r'::l_U_"_u__-_:_:_i_+_'Vi_'-+(_-.___:,,_] I',.:_:,l

l';quati.ns Iq.26) fl_r.ugh i9.33) yieht the changes in fluid properties and veh,vitv only if the

math number for ea,.'h of the two h;cation_, i-_ known independently of the heat transfer. The

heat transfer causes a change in stagnati_,n temperature, which is llaer_ used t,, e,;tablish the

math number by equati,m ,q.33_. The neces._ary key relatim_ between heat :ransfer and

stagnation temper0t'qre can be obtained fr,_m the steady.flow energy eqt|athm which ,,ieh:ts.
in the absence ,,f work and elevati.nal c'aarl_e.

and
Q' = % _T,,._,....T,_

The cquati_m can also be writtvn in lerm._ _d rates of I'|ea! transfer anti mass t|o_, :is

T _F2 (_

.... 1_..... 19.351
T,,_ u'('p7'o_

_hen this expression f,w stagnation temperature is .._ubstit||ted int. equation t9.33), the

unkn,,,,_n math _;umber <'an the-re'.icallv be c.mputed. H.'_ever. because of the c-mplexity

.f the f||ncti,m. _ _'barled -r tabulated .-,,luti,m i,, required to establish the unknown math
number at th,' giw,n sta_nati,m temperature ratio. In addili_,n, the existence ,,f both 1i_ and

1I: in the cquati,,;_ imp.se., a pl, min: pr,_blem which makes it m.cessar,,. ,race again, t,,
n.rmalize _[lt. equati.n. This is d,m," by n,,rmalizing the _ariablc properties and math num-

1.09



i

I._I,IPR/..'5.%..I__:I_,il t'_DBI_IJI_

I' _,1

r [(/, , i)_,1 _-'

1 -f" i/, _- I __!" i_k?,HI
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19.391

lg.,l,Ol

l_.,ill

l'_quati,ms dJ.3h} throuRh (q. ll_ are pl.ited i;, figure 20.1 t',,r _r = !. l and/, = I.hT. The

u._e ,d" this w,,rkin_ °'liar! _._dem,,nslrated in the t.lh,wing example im_bletn.

Ex.._,_tPl._, PHOHI.I.:M 20. I

_ir at I{R) p_ia is being tleat,'d in ;.! ,,nced'|r,,uRb heat.exchanger tuber "l'b.e airflow, _._
0..1.0 Jbmi,_e_'. the tube inside di_n, eler O_0.81 il|.. and th,' inlet air temperature is 7(Y I:. The,

heat input is 7.5_ [{lu/ser. i)eh-rmme ille stalb' lar¢'ss||rt" and temperature al the llibe exit.

The inlet m;u'h nuraber i_ determined un,_l easily by t|ie pr_u'lical f,,rrn ,d" equalh,n (8.2%)

in _'hapler 19.

: T,,_7,,)_=0.163-1. ._ls. (P.'P*), "2.27'_ and (7"/T*ll-%I II, 0.1_,_,7. figure 20.1 yields ( ' "* ::

- O. lt)70.

By equali,m i9.2,._i, the d_wnst."eanl-l_ upstream _tagnati,,n t,'mF, eralure is (',':,lliputed in
terms _,f Ihe ||eat lransfer and flow rates and the initial .,_tagnati+,n temperature. The value

of 7',.,, is evaluated at M, = 0.1947. using the i_entropic fun_:ti°ms -f chapter 16. figure 16.1.

yields
TI
-- = 0.9922
To,

:l.llt

-- :4iv-
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l'lw *',d_ ma,'h n,_..b_.r i_ ..w r_'ad _:_ , 1.,,1. :, ,: I.*198 m ii._,,ir,. 21t i ,_- }l. ; I}.211_2. _,I

lilt' "_,ITII*' ('xi[ lll,II'il Ill..' Ib"r. [h_. #*,i| [iI'_.-_,_llI-l, ..in(I [¢'nl[}_.ralltli,. I,I|D_ Jrl. fl'_id a_

il}_P_}.:::._...61}1"*'_ and I'I'/T_:....---_}.......9-):-,. ]'hen the" ,,_II_-I_lali_-pr,'-.ur*'"_ :_}:np',It,'dfr.cn

_. that

......... -........ 0.0917

' I

[P,\
t':: = t J, 1/_.] = i I(X_} (LL991T ) = _I. ] T p._ia

Similarly. the ,llt]etst_iti,'h,mp_'ral urn* i_,'-ml,uied fr-m

...._ ......: ...............I.I _$7
r

r,

/.

:---l_7.:ffF

Choking Effects of He _¢;r_g

Tt." pn-vh,u._ di._'u_ g.m _d the I'_avh,igh-lin,' _ _iara_'to'ri_ti_'_ l.,,_ml_'d _mt that heaiin,.z _i

_,_b-,,n:,_' and _npvr_,nh' tt,,_ _'au._._ the fi-w pn,_'e._._ _,. l_:*w,'*-d i,_,ard lhe' p_finl _d ..tmkin_

at 11-- l.O. wit_ the c,_rre_p_,m|in_ im-r..a:_ein ,'mr,}l)). It _uffwi_ nt h_.at i, added I,,a

_ub_,,niv tl.w. tt_" th*w wiil hev.m_" et. I:,.d in "-he con:_tanl-ar'2a pipe and any fllrlher heatin_

_,'ili ('aB_.e :t redu('th+r_ i.n th,w raft'. In _eneral. the _'t'fe('ts _d" t'rwti_+n in -qtt'h a _';.t_,e _'an

,_eh|om b_- ne,.z.lected. _inl'e th.e ',cil.'tl(,na I _.i:|'e'¢'t-_ ai hil._h _lb_oriic [-[_iv, are u_ually very ._i_-

ni_.allt. The ei]e¢'ts qd' I:rh.,ti.n _._,ri be expe¢'led tt_ "',u_h the- [_}r_('es,_ t. lh¢" |.}[nl id" ¢h.kin_.

Ill the _-a'.i' .f _ul.'r_mic t|o_, it rib}re be'at i _, 'M<Jed than t|,'¢_', necessary t_} ¢'all_e ¢'h-kh_.

a m,rnlal '.h_}¢'k will exi'q in t|w diver_'nt _,'('ti¢._ .fthe" c.r',_ergent-db,i'r_e_l! nt_zz]e _en¢.rating

lh,' ._uper_mie pipe t'l._. Thvref,_re. the up_,tream ma_'h numb,,r will be r,"d'wed a_ iu

('h.ked -ut).,,ni(' fl,,v., hut n,v_ a._ ,i re,_ull _,f _-h_n_z_.-_ in fluid t)r_)!-'rti_'_ ra:her tilar} a r,.du(._'d

tt,*vv rate. _ m_,re det-liled de_ripti,m ,,f ,'.h,,kin_ _ith _iri,!de l'., Mla_,_'v _an tw t'_,umt ;n

I0]-L-
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PIPE FLOW WITH COMBINED FRICTION AND Hi:AT TRANSFER

Re._nolds anah_y, whi-:..h reta,es tt,e coefficients of heat rranst'er al_d triv_i,,n, i._ indicati_,e

of the ('h,se ties tha! exist betv, eer| the proees_-e._ of heat traosfer and fric:i,m. In fact. the

anab,gy identtfies th,, direct pr.porti,m relation between the t;-o c,,ei,_ivients, with _ab, r

quantities bein_ constant. Theref, m.. it _'an be _aid that File beat trar;s|'er between lL-e pipe

_all and the flowing streaua is not only proportional t,_ the temperature differem'e hut also

directly proportional t,, the v.et]wient ,f frieti_n. Therefi_re. if a signifira||l temperatule

difference exists between the pipe and the flowing gas and if the pipe has _: qgnifivant fric-

tional length, then the effeO's of both fiietion and heal transfer must be eonsidertd simul-

taneous|y in the analysis.

General Analysis

The heat iransferred to the fln_,ing gas is reflected as a change in stagr_ati.n en'halpv

and fi)r a perfect gas as a change in stagnation temperature. The heat transferred is als_'_

described in terms of the heat-tran..[er coefficient and temperature differenee Then

w dQ' = %4Vc/, dT. = h,_ d.L,.( T,,.- T+,,_ 19.,_31

Substituting the definiti, m t,f hydrauB.,' diameter, dA,.= t4(dL/D) yields

dT,., / 4h,_ xdL

A_sumir,_ the adiabatic wall tvmperature 7'a_ t- be To (,ml_, a slight inacci_racyL the heat-

t_'_lnst'eF eqt_ali_m I)ec,)me..
dT. / -$h,, \dL

['}4 further assl|ming l:{eyrmhls :mah_gy t_ t)e accurate Iprowm _enerally ac('_mae t_ witlm]

a few penent v, itb fnlI'_ de,::.L,_,_'d gas tt,,_* in pil.e_!

FJluali,m 19. b_i redt,,'e_ t_

r,,-----7"7--: ,IL 19.r._,!

Equation _0.-1.5) provide.- the direct integrabie relation betv, een the chan_e in stagnati_,n

_emperature and fricti_mal leezth. The determinati,m of the ,.hange.,,. in .ther fluid pr-p-

erties require; a m,,re th,,r,,ugh analysis -f the thaw pn,.es,< Equati,ms I8.1:. (8.21. _g.,tl.

and i8.51 lch. 8._ are found t. be valid in this problem _m mspevti.n. Also. the steady-rh_v¥

energy eq||ati-, can be applie,t and. in the absence .f w.rk and ,.ievati,,nal change, yields

1!3
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The is.-mtr.pic stagnation temperature ;'hange can be written in l,_garithmic differential
form as

r ?--l__s_1
dr,, ,Jr I- __2 ;-'_. /,t,t_
,:, _+[, (_24) j ,9.47,4- . M: Ms

The four equations from chapter 8 and equations t9.45t. 19.46). end t9.47) comprise

seven eq,_ations in eight variables. These can be sqlved simul,aneously io produce equation

/ " k-I tk [1
d,,14"-' = /1 + k"_/2_ [ 1+ (---2--) M:_] M2

11'12 [ I -- ,1'_ 2 +

d_)

L, I9.49!

Eqqations 19.45_ and 19.49) provide the means for solving the compressible pipe flow prob-

lems involving c,,mbired heat transfer and friction. Because of mathematical complexity,

equati:m !9.._% _:ann,_t be integrated to produce a closed solution. Therefore, a numerical

or graphical i,uegration is required, along with a more detailed specification ,ff the manner

in which T,, c|,anges. The cases of constant wall temperature and constant heat flux will
be developed belo,_, including approximate closed solutions f,)r iow mach numl-,ers. After

the change_,, in 14 and To are obtained by the numerical integration, or approximate methods,

the ,,ther fluid pr_t)er!y changes ,.an be determind directly by the f_dh)wiog equations
developed strictly from c,)nlinuity and definitions

e-' (_-b.'l++_
e-_= _.+I:] _" jv-_ 19.SOl

_Y_= (_.L' ,"Y!_+. -fL)\]K, lg.sll

[9.521

+c="_;][i +(_-')"_l-- I+.++l

-1-1.1

v,,+ e +_-)

"-:': >I;+ '++'+'
' : ,J

I9.s41
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Constant Wall Temperulurt

In _omv ra_e._ the pipe-wall :emlOe.r:iillr*" t'an b(- a._,_umed to bt- ,-onstant. ,uch a,, wht.,,

the pipe i., surrounded by a boiling d_r t'onden_ing h,luid ","'h_-|a eqtlali,,ll !().I.._: _'at_ h_" _q-

tcg_.ated tc 9r_du_.e the foUowing direct relation b-,tween _taltnati,,n t_'mperature and pip_.

len_h. (the hallowing equation is a simplified version ,ff _lle eq_|ati,m in ,-h. (;.J

l" T_.

-:f_., Iq 35-1

and rearranged, LT_, Fnl

19.55bl

As stated previously, the evaluation of the other fluid property changes in the pipe re-

quires a difficult numerical ,,r graphical integration t_f equation _9.49). Except for low n_,ach

numbers, a digital-computer solution is recommended. For M <_ 0.3. the approximate solu-

tion outlined in the remaining part of this chapter yields accurate re:-uh._

_ts pointed out previously, equations ;8.11. _8.2L (8.4). and !8.5_ _,'h. 8_ apply. These

equa_h_ns can be combined with the definitions of stagnation temperature and pressure and

equation 9.45) to produce

Le,_,_
....... --e,-S---:- C 7-LT-,, ldt.
e,, (_)

I'-).561

By generalizing the downstream location and c_mditions, equati,ns _c/.50L !9.53_. m_d _t/5.I,i

can be combined to yield

[i -._'-I q_'

" , -_,.,! _,/? 1o.571

This expression fi_r :It _- can be substituted into 2quation (056). N(_w. fl)r low roach number_.

the change in the bracketed term will be very small so that the term can be assumed to be a

constant at the average value of the expression

- _G.,)

as obtained from avera_ng equation (9.57i. On this basis, equation 19.56t can be integrated

to produce

v.,," ",-,(r.. + r,, l(,'.v:.,.., [1+ J,,,T,,,
$15
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I'h_' *',u-t,'t_, ," ,,t _mk_,,,,,,t_ t.'_'m- u_ t_*' ,'gu._lum .',*,gtl_r,', ,,__r_.¢b._+_,i,.,rt,.," +.,,hlli,.t_.
tit-! Ir_l] .'+l_ b+" rt_,,,h +. b,v ,_,,_,lr_liH_ lb,. ,-_ltir,. br:l+'k,'to.d l,.r_,_ oil vslu,h lh+" 'lilkH,,v,,ll l+.r:'P¢..+

I'+,++.+,_,dI!: ,'_.i.,,l t,, h_l,,,..I _,.d_l,+',,f 2 xt,{ill th. _,.mp, lt. d '. tl,w ,,* t++,...il'.,_.+l _,'<',,t_d lc,.d

I',lll b_.. Ill_ld,. in (',,n_t, il'l_l|l++l_ v,,ll}l .I _,dlhi,l" I,,| T,r: I'+,I . t1',,111 l'l|ll,llili, ll ll)+.+t."d_+)+ "l'}ll" s_lhl4P. IIf _1:

,'Jill If+ ,_l_|,+illl'4| 111t,,',*,l +',,l_,il++ '(r,,l'll lll_lqt" +,,+'t111",,|_i," ,I+I'+,,I ri,!i,, lIll'Hti,,ll l,h,ll,.d m fi_,Ir,' l_,h

+<-h It+i H+.,.,,,,++. ,.f., (',,iv_ i,l..nl,d .+_vv.iI.,ri_s ,. th+. vu:n,'h-v..v_l,,'r f,ou,'t_,,u,. ,,I ++'+l_klli,_n

t';.+_;'+ _,t_,l th.tl <,l t I! .I+'_. ll- in ht,,t,11r+'1_.6 _.i_ I_I _,,_¢_b+" r+',td ,'l ._ _,.d_+" ,+I'

I h,. ,._t+,, t I l+'t_+, +,., _,'.td dl II,. ,_'_,I if'+: I',,+ + +._ th+" .ip!,_,,,_tt_+,t + dti_. ,,,ml.,ut*'d iu lh+"

l_rl"_,+,,l+- !,+i.lJ. I),1" .,,I,IIi,,H -;,,,*lJd ++,. ir+'rdll.+l +_v,ld .*ilh, +,-.! .im+,+,.,..m+._,t +. r,..,, h,.d b+,.l,,++.l+,11_

tb,. _l.-_t,_+,,l ._tul , ,,_t_pt+t_,,l _,,th.,. ,,i I',: I',,+. t_,, |+(,,,+.,hlr+..ll.d, ,_,.l.lbli+.h_.. tlt,. _,+ll;l,. ,,l

II,+]'li,. +,,hi<'h _.. lh,,. t,.+,d t_+ <,,H_|.ir,. Ib,. ,,lh_., Ph_1,) i+r,,l,+'rtv ,h,_+1_,'. _+-iH,..t' +',Itl,i+i,,t_,,+

l'b+, h,*:it tr,_tl .t_'r p++.r;+_+,t t_.,.. I- +'+,ll1|+,l't,',_ ll,,Itl ltl+" ,'}HI+,',' I_) ,.+,I.I"II+III,,H t_":II[+,"t ItHt +" I",

.,+,+,+,+ ,,,,  +Iiiii¸ ,>

/i .,_/Y I+_,+.... ,

Constant Heat Flux

X,_,h_,t_ th+, h+.++t tr,u+._++'r t'r,,tt_ th<" pip_" ,+,_II t,, lh+. fl+,',_i+;_ ,_':+I.+i- k_,,,,,,_ t,, b+" r_'l:_ti,,_'b,

m+h.;.+.,i,'r_t ,,I" l,,,';_ti,,_ iH the. pip+'. -,,_,h :_.. _I..,_ lh_ + pip+' i- +'l+','ln<'+ll,, h:':_t+',l, th," +',,_-,+_t.t

h+'+_t lh_,_ r,.g;+ir+'- th_1! lh+ + tt.ltlll<'r+.t|lllt' d+ll+'r+-;_',, I." <',,_+.t+mt _it h., _.m I.' ._- -,H_.,I ,'_m-+t._tt !.

]'ll,.ll ( 7",, 7",,_ + r,+, + -- 7+,+ ). ++i111j+.,,|+l_.ll+++,lt1(). L,.+t,+i+_t+.,.:,r+_l,.,. _+t+p),, t,,

7",,+ 7',,, II,+.

7+,,, - "I'+,, +_'I_

l,_++t ,t- +_ th+. <_+.,- _d _,t,-t_t[_t v+.dl t_.tt;p,.+.it_[+.. _l_+ ,".+dtt.tti,,tt ,,t th+' ,,th+'r llt_i,i pr, g,.rl'.

+ )_:it+,_'+'_ r+'tllilr+'_.._ ++tln1+.ric._li ,+r _rdpl+, ,d iHt+.'.z,'r.ttj,+fl +,t '+'+l'l,l|++,ll 4_11._(_)) +Dill tl+)_ +H_',,rp,,r.]tit_
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CHAPTER 21

APPLICATION OF COMPRESSIBLE FLOW THROUGH COMPONENTS

In thi_, chapter lhe H.w charavtrri,_th._ ,,t" pn_-tlnluli(: _'oml.Nmenl_ are de_'ribed wilh

_pt.vialemphd_i._ +m pd_._ive re_trit'tiveeh-menl_ .uu-h _ fully °_pen valve,_. Tlw fl,,wt'harav-

Ieri._th'_+d parliaJly,Ppen -_impie _a[_+'._and the operating ('har_vteristiv,._,_fpre,_ure rt._tl-

lah,rs are al_,, &.,_vribed Jl,riel_y.

COMPONENT PRESSURE LOSS AND FLOW CAPACITY

[4et'an._," ,,i 1he vide variety _d _'<,mpJex iu_erna[ g+-+,,netri<" _haI)e_ ent't_tllllt'rt'(| I_1

pnt.umati,' t',,[_,p, mt': "% n,, [surt.l'_ anajyli "a[ dt*_t'ription ,,f the flma pr,,'es,_ can be m_de.

as ha,_ hven d, me _,dh n,_zzh.s aa,t I.,ip+'-_. ('on,,equentlv. a v,-lrietv ,,f empiri('al relalhm,d_ip,_

avwt ih,w _,_vflivwnt-_ ha_," c,,m+, inl_, _t,m.'ral u_e l'_r -tppr,_xim_lm_ fh,w charach'rist:c__ _ltnl

cap_.t_'llie,,. +_'_v.|l_+._ :ind -imilar _-,_ttlp,_tn,_.nI< l.ack _,f ._land.irdizati,m °_1"vh+'._c me|b,.i, and

<',,,.il'i,iet:t_ -,limulal+'d I,er-,mn+'l ,,l tim Nath,nal Bureau ,,t qtandard,, ,\H>, t<_ ,,-_tabli_h a

-,tand,udized moth,,+!

The NBS Flow Factor for Air

X .qud_ ,d ttw tl,,_-le_t data It_m a lar_ ,,-metv of pnenmalh- c,'tnp,,nents ba_ sh,,s_,n

thai the _,_l+t_s t_.,_ tale (v_hWh cart be wrillt'n itl Ierutl_ oj sl-mdard _,,,[umetrh' fh,w ratel ,d

•_l+mdar,I Iemperaturt' dir fl,,win_z thr+,u_h a ,',mH._,m+'nt van be relale I appr,,xin_atel,,l,, the

_.Iallt!m.._.qlrvrali,,,b'_the I°,Ib_in_ _'mpiri_'alexpres_i,m.

_S_'.I"M_, t-.........

..........._.,,, '_"i'1- _: I_o."I

The term /",z is defined a_ the "'NBS th,w la<.'lor'" and is simply the val:le of airflow r3.le per

umt |lp,,lreil.n_ absolute pr,.s_ure when the static pressure rali,,,. _/p, = r = 1.12. Equati_m

11).21 identifies lilt* _d}served t'a('t thal for perfect gases the ttt)w rale i'_ dire,'llv t.,,roporti_mal

t,, the upstream ahs,dute pressure, at any given pressure rat|,,, whi,'h is consistent with

,,ther dime:tsi,,nless flow parameters _u_'h as ma<.h number .ll. and also ,b ,+f vhapter 19.

"F}p" t'v.i._tt'r,('e <_f the pres_.ure tun,'tmn in terms of the pressure ratio, rather than pressure

difleren<'+', i'_ censistent _i*h tt,+. _,,tm +,f all the other compressible ttow formulati_,ns. FZv

,ts detiniti_m, the NBS fl,_w i.u't,,r is m,t dimensp,nless but can be specified in any :thins.

t',_ c,m_erl fr, m_ Ihe ab+,ve unils ,d .+<'fm/psia l_* lbm/see-psia, lhe perfecl-gas law can b++

_,_lv+,,t t,, vieht

<(_F.M = i l..TSRu scfm ! 10.(_ i

-1-1q

PRgI3EDING P_.GE BLANK NOT FILMFJ)
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where staudard te_aperaturt- is !.._k+'n a_, i_O° F. \,,le I|I_ the" conver-_hm tr,_m .,t._,ndard
vlduluetri_' lh,v. unit._ t,+ lh+" usual mass flov, tln;l <- i..; dependent ,mth+" _a.+ c,,,Istant R. l'hen

t,+r air. R :-53,.?,6 ._,, t|',at +_t 11:%1+,-+-T86u ,. _tnd I".++--786F,,. _ub..+titutin+ t|p.'_t" vattie,_ lilt,+

t.qu;Ition i ltL2i _,ield._ th,. _etu-ral L_rm i++the empirical c,)mpi+tlent flow +',wrelati,m

+5+TM+, u, _ ...........

+ t)!+ il:).+l

Thr_'t" tlther emt+iri<'al equati,,ns have been writtell consi,_tent with tlt++ defini+ions ,,i"

I+'.+and F,..
t.";( if"%!t,

---2_++rlI - rl 110.._l
F,lf,, i

+S(:FM_I :8

F+p, =_J5 rtt-r}t3-rl 110.61

IS(]PM) i = x,/:l 5.;+1i rl.43 _ rl.:l ) [10.71
Fqpl

Eqt,ati,n i lO.St describes a minimum expected pressure drop+ and equation t l0.6t defines

an a+erage fum'tion that best describe+, the bulk _|+ ti,: da:a. Equations _10.1.+ through

t10_7_ are plotted in figure 21.1.

•%n ob,,i.us deficiency 1,f the NBS flow faet,w equations is the lack of a p._eans ,+f accour+_t-

ing f;,r temperatures other tilan standard, or gas other than air. The flow parameters

_the left side of the equationsl can be generalized _,y applying _he +,,ame terms that occur in

the rig,moll_;ly established ih,w parameters flir compres'_ible adiabatic flow in n,,zzles and

pipes, l'he I,aramcter generally used is the mach number, which can alwa¢s be simplified

to 6 by includillg the spet'ific heat rati_ k with the remainder ,)f the particnlar fu:tcti,m.
l'h+'n >,ln('e

w RT1 +_(_I+'M P'l
(b, = ( \/7 'l lI, :- ]-_-_, _ g,--7..... 14.75..4P, _ g,.R

the NBS (,,rtlpo_;ent fl_+w equati-ns can be generalized to the fi,l!owing, while Inaint,dmng

the \BS l|ow fat+tor as defined, which can now be applied r_+any pt+rfc(.t gas and temperature.

+l'he fi,lhiwing equ:Jtion is a combinathm .f equations t 10.8) and 110.Ok

- t

/ \ " " ( /*l\ - F+,,,V ]=•j/'t r)

The function j'<r' can be either of those described by equathw, s _10.4! through [iO.7!. "_/hen

the real-gas effects are fact,red into the flow parameter./he equations bec<_rne

u' / Z,R '_ ' T+' SCFM //53.56_ [Z T _ ', I

which is a comhinatiop. ,ff equations IlO.1l_ and ilO. 12k The effects of the variation of the

spe+>ifi :' heat ratio k fi_r perfect gases, and isentropic exponent k_ for real gases, calirtot be

®
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CO.I,It'RE.','._b/!_ _,.rS tl=t\DBr_Ol_

accounted for in the NBS _:quations. In tile |heoretival descriplion ,ff n,_zzie fl,,w and pipe

tt_w of perfect gases, k is part of the analytical function. The ab,;ence of k in the empmca]

functions of equati,ns (|0.4} tim,ugh t10.71 is not considered serhms: h,_wever, sim'e in the

exact soluti_ms fl*r nozzle and pipe ttow. the ef%ct _t"/,: is t;,und t_ be significant md_ at nearly

ch,_ked flow conditions.

Conversion Factors Relating Flow Coefficients

There art: several other widely used ttow coe_cients t_ describe the fl_,w ea_ a_'it_ t,t'

coml_ments such as valves. The most common are C,.. d,,. and K,w/IL/D_. which are all

based on incompressible flt_w. The conversion of these eoeffacients t_ any c_mpressible

flow factor can be made only by drawing the equivalence in 'he low flow rate. low pressure-

drop tpressure ratio near unity) regime of the co,npressible Row which is also incompressible

in nature.

The factor Cr is based on the water flow test and is equal to the flow rate of 60 ° F water.

in gpm, that will flow through the component with l-psid differential pressure across the

component. More specifically, C.- is based on the formula

{GPMks_ r-.,, _= C,.'V'p, - p.,_ _10.1:_ ]

By writing the general formula for incompressible flow of any fluid (from eq. t7.15i/.

;2g,,i 144} _,p_ -- p._,_

q = AV=AK_ \/ Y

and combining with the necessaD unit conversi, ms between the var:.ous flow quar_tities.

the water flow f,,rmuia can be written 6_r standard temperature air as

¢SCFM_., = (I.997C,4_i \ "1-- r i t0.14l

a.nd since the NBS c_)mponent fl,,w equa'i_,n is

_Si FMk_ :: F,g<f r_

the convers.;,m between C, and F,I is

C,. \ f(r) l
II0.151

which is see_ to be dependent on the NBS function selected. Inserting ea,'h of the three

functi,,n._ into the ,'onversi,m equati,m, and evatuatin_ in the incompressible flow regime

where r= 1 yields _t',_r eqs. i10.4t. _10.5t, !10.6_. ar, d (10.7_. respectively):

_22

tg', ] = 0.4985 t 10. !6/,]
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qFI'._.IC4TIO_ ' OF CO,$[PRE,_SIt_I,E Fl.OIt TtlROt I,'H LOIIPO%E_'I',_

C,. = 0.482 I ltl.. 16dl

The conversions of do and K can m_,st easily be _,|,ained hv first reiating them u C,.

and then to Fq b_. means of equations ¢10.16t. The gener_.l fl_w f,,wmula fi,r incq,mpressiblc

flow can be written _,nee a_zain, but now in terms _f the equivalent orifice .f diameter d,, :.tt,d

a discharge ('_ePfieient. The equivalent <wif_ce is defined as one having a dischar,q.e c_wtti-ient

of 0.60. The equati,.m reduces t,_

so that

z-

i(;P.Mks,J," r. " _= 17.9d_,Vpz-pz

C,. = 17.9,t,2, 110.171

Then the c,mversion from d+_ tq_ F,_ is ,d_tained by substituting equati,m t10.17)inh, equati_ns

tlO.16L

The head h,ss factor. K orfil./Dt, is ,,brained from the inc,m_pressible-fl_,v, equati,,n

l? t: (t 2_g,. / ,

Substituting the continuit.,+ equatiot? t,_ eliminate 1 _. a_<t als, chan,ging to .,_lumeiric units

of water flow yields

'(;PMh,,_ v. _, ; = 5472 (_+_ ) _P, -- I'I

Then the c,,n_crsion fr, m_ K 1o C,, is _i_en tL',

,,r in terms of the inside diau_e/er ,d the circular c_mnecting pipe.

D_ 9qsr i)_ 7 11o.181

Note that in the ca_,e of K. the e_mversi,n to Cr is dependent _n/he th,w area, <,r i_side di-

ameter, of the pipe inu_ which the componen! i,. r'_mnec/ed. The conversion ,f K and fJ./D_

t. F u is accomplished hy substit+_tting equation 110.18) into eqttati-ns Ill). 16).

..X.final conversi++n fr,_m rL, to K is obtained hv c.mbining equati_ns tl0. iT! and _10.18_

t,, y_eht

d,, = i 7. l'g itS]= 1-29 [_-/_j [lO. lq_]

12g



f,,un,iin _able 3.1 _ch. :]i. 1",,:.,'in_'luded. ,'_,etlt,'i_'nt-il;t_.rm_ ,_f_'qui_aI,'nlh.-_,,th/ I),

reqllir,.'the t'_d_t_|rhql_-.n!i|_,_lrilli_,nfa,'b,.r,/_lak,.ntr,_n_tl_e\l,,,,d_,lia_r._m,>t(i_.',_ ,,h.._,

"l'h_,_id,' variati,,nsf,,und it, the'data ,d'_.dd,";{.I¢,'h.A, arc in,li,"._i_,-,,t_h_.u:_,',.r_,_nt',

obtained _mly by lest- rl,n al ,.,,udit_o_,_ _'h..ely dul,lic _tin_ lh,' ..er_,i_'e _'onditi,,n.. in all

respects. ()tht-'rwise. _,,,,,l en_ineeriu_ jud_m,mt m,J_t be ex_'r_@t'd in ,_eh'_'ting a tl,,_

('oefft¢ient ,_o that _I _'_ll_el_.ative. yet a_'_'tlrate. _'v_It,ati.n r_-,.;ll!l_. 1"(o_ ,,,elli,'wnl,. -h.uhl

be obtained fr.m the manufacturer, why'never p,,_.,ilde, a],,_g _ilh an exaut detiniti,,n ,d an;

quoted ff,_ ¢'_efficient.

Com_:_nll_l Equivolence With Fripional Pil_s

In the analysis _=f inc.mpre_sible tl,_w through c,_mponent._. [ittirlgs. and _, forth, the

empirical expressi,m used t_ compule pressure loss is the saint- as that used f-r fri_'tiona

pipes

[.I )l=[,(5)I[0
There|'_re. the treatment ,,f comp,>nents and litting._ a_ equi,_alent leu_th_ .f straight pipe in

incompressible fh,w i_ as act'tlrate as the t'rnpiri¢'a] mclh,.l itself'.

In the m,,re dilqicuJt compressible fl,,w ease. the exact s,duti,,ns fi,r adiabatic fri('ti-nal

pipe flow are obtained by lhe Farm., equali.ns or. more ¢onvenientl,,. b_ the" ,:|irect graphic

methods, both of which are prest-nted in chapter 8. The p_sibility ,4' treating t'oml)one_t-_

as equivalent lengths _!' fricti,mal pipe _h,,uh! n-t be ,_verh.,ked a._ :t means f,,r _'orrelatin_

c¢_mponenl flow charaulerisli_"s in pne_matiu s',stem_. 'l'hi_ is e_pe¢ially true.._in_e the.

methods using the NBS flow fact_rs and O,luati_ms. as _ell as all _ther ,,general approache,_ i,_

('ornpres.<.ible flow through ('_,rnp, melatS, are tl_en]s,']ves ,,nb ,_q,,,d '_ppr,,ximati,m_;. at be_|.

l'_xa_'t e(l_fivalcu_'_" hctweep. ',he ('oml,re_sibh" 1|o_ s_dtlti,_ns _t' _'haptt.r 8 and the in_ .o_-

pres_ible flow ¢.quati_ns above !':.Ill bt. pn_ven in the I-% pres-,ure-dr_,p _pres.-ure rath_ n¢'ar

unity) flow regime's. By eliminating, the _.elo_'ily term in tile equafi,m ab-ve, using the ¢'_,nti-

nuit_r equ'ati_n, and rcarran_zing, the inu_nq_r,'_.._ibl_' fl_,_, equati _r, ¢ an l,e v, ritten pr_'_'i._'ly

in te_ms of _i_ec0_mpressible pipe lh,w p.!rameter. _b_.

-- -p__:

[lO.20j

Equation (10.20) pints as a straight line witl_ a _l.pe oi"2 ,)n the 6_ ('harts ,,f _'hapter 19 and

the lines coincide" exa(qlv with the m_re o)mplex (.,,mpressi[,le fl_,_ t'ur,_e_ in the low pressure-

drop _in('ompressibl,-i range. It should be n(_ted that the empirical f1,_w equali,,ns have a]s,,

been made equivalent to the int.ompressible flow in the h,v, pressure-dr_,p range by the flo_.

('oeh_cient cou,,er,_i-ns performed at P.,./P_ =: 1. Then the in:'ompre_sibh • equation:, the NBS

method, and the dh chart meth,,d all produ_.e identical rest, Its in the l_w pressure-drop ranze.

The use td' the 6: charts merely suhslittttes the ph,tted exact pipe" ft_ fun('ti,,ns in pla<e _,f

the f_ur empirical pressure raft. functi,m_. The use ,,f the d_ t'harts ,dters the added mean,.

,,f ac<'_mntin_ for variati,ms in _.peci,_t' h_'at rati,_, and the e._tablishc'd m_'th,,d- ,d' a_'_,_untin_

fi,r r_'_,l-_zas ¢'t'_,k_<'ts.

_')1-,_

®
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llt_[, ,.]egre,-" ,,!' a,',,uravv _.hml!,l |-. eXl,-','ted _,_-'II hlh, ttw r-mi,r,-,-qhh." th,_, r in_.e ,,t

lh*" d), ,'harts ]tJ,_.ver. II,,. ,',lm_.,I-.: Irn,,_h m_'lh,.t ram_,,_ b," ,'xl-'.h',l 1,, _ichl Jcruralv

le'_tiJ["_ at I_o_/ i'oll(|i(i,,tl _, ;.i{ipriKlt'hiflz _'ha[ i,[ ('hokvl| [lipv {|,,_. (:,,m|._tlcnf_ II'_ll,tI!_ }l-lt-¢"

rcdu,-'d lt,,v. 3reA. tha| I'AII-I' _ht" rb,_k_.A _'olLi_li*q_ l_ tit. I'r'at'h¢',l 4I _i,_¢'r _thl*'_ *qL/% (h,t:l

the etit|i'_{dent ¢',ll_.{J, lL_ .IreA D_|I¢'. _'io'w _'h_l',artt,rl-_it ',_ i[i (lip ri'_It,,_ tll'_t b,'l,,_ .lll_l ,.liH,_,"

I_lt' poil|I _,f _'}),)kill_ .r," ¢)r,_bdblv rot,it. ,lepen,h'¢_t ,m tb,' ')mimum ..v., rJlit,. |}|t. I))'ijil'_"l_[)_"

tli)W ('lqltl'LIA'{it_[I. _.|lJ [i'1¢' |)rl,.:,4|ll'l- r¢'t'_t'r_ ,lfl',_'i{i'd t_" tl_t' lt,,*-I),i|,_| ,_q,,i;i;et{_, ,}_,_tl,dr_'dtli

¢I_" the p*lil'_' I)f .{'|l,lkill._..

ri_e ,.qui_alent-len_tb m,'th,,d ,_-m;¢ ;be d), vharts ,4 v}laplv! I () re;pier,'- I'h*" ,'ah'ulati,m

,,f the general fl_,w [)aramett'r _t froln the II,_l iI expre_i,,n o|' *'qll,tti*)i[I (_.,_31 _,|" ,'hd|)h'l 1¢_).

Repeatin_

h%

,,IP,! _t-;_7----;0"221.'-, ,_1_/ \Z,RT, 110.21.'i

and in 5erms of standard cubic feet p_'r minute

( _CF'M_ _ ,'Z,T,., : R [10.2|hi

where .4 and D cq,rresl,,nd _ilh the conne('tin_: piping. The equivalent/!I.D_ can l,e added

to that of lhe pipin,' oi" a svslem being anaNzed, or treale.l separatt.ly. l'h_. valtte ,,flil.;D)

can b," computed in terms _,| the [_ow r,,.l_cietlts already mentioned by the f, dh,wit_g r,-latiot_-

,41ip._. obtained i'r,m etluatt,ms _li). l_t _, _]0. 17!. i 10. 18). and Ill). 19).

,) ,/.'_t _(.:_] .... d.,l !10.221

Then at ,he c,,mputed _':alue_ of (b_ an,!/d,/l)_, the ,qatic-pre_,_ur_" ratio, a,'rt,*, the r,,m|,,,n,-til

is read directly *m the 6_ t'hart ,_t' the appr_lwiat_" _.altJ¢. ,4 L or L,.

_,hen _ery m'('ilrate" ('onl[}i)lll'lll flq',_, cllaracteristh.s art. requir_d, the cornp, ment ,4t,,uld

be subjected t,) fh)'._ !e.qs lhal rl,,sel_ duplivale the rxp,.vted [h,'z t',,n(lili,,n,_. Test data

re,iucti_m sh,_,}]d i)e q,l" the ,_e_,eral form of the _ i'|larts t,) identify, an', equivalent e with

straight fri{ tional pipe. and ._,, that !lle data ('all be al,p[i,',_l l- an_, ,,tber ga._v-_ and fl,,v.

c.nditiori_.

EXAMPLE PROBLE.'4 2[. [

._ hand _ai;e. having the g_.neral configuration ,,f a "/-pattern gl,,bevalw, i,_ pla,"ed in a

2-inch. tlouble-extr:a.slrong nitr,,gen line. The de,,ign fl-,_ rate thr,,ug|_ lhe _,ab, e is 50000

sc|'m wit[t an tlpstrealn pressure ,,1"I(X_) psig atld temp-.rature _,| 7[£ [". (_,mpute the pres-

sure drop a('r,,_s the valve at the design c,,nditi,m,L

_OI.UT1ON

In the absence of better data. the flow ciwffwient ]_ estimated |ri_m the data ,if table ?,.1

_ch. 2,). .'_. ran_ze ,,f _alu,.s ,,f ].kS-'_ L/)"_; 17.'; is -q)vcifi_d. ._.ssuming a _ah," of 171) and

1.23
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Similarl_. c,luati,,ns ,ll).5_ and I li).t_) predict pres..urc lo-_se._ ,,I I_3.7 and I,'7.8 p-6d.

:'e,_ p,_'_ I i'¢el',/.

The p,'rs.qar,- loss can _ls,, t.. _',mtpult'd by lh*" _'quiv,t|_'nl-h'ngltl mcth,.l using lhe

chart,_ _f chapter 19. The fh,w paramel°-r 6. i._c.mpuled usinK eq.ali_m ,H..55_ai,,f t'haptt'r 11/

{b, ----13.21 ! I0_ l.Ol_,il I..71 _zj _ ---_-_ _- ......

----I). I_B2



I.

1"h_._T,'--ur,'b,.- [,r,',i!,_i,,n-,,,T_p._,,,_ti_,,r'.d,l_v,i.',h_b_ thr,'t"\II_ n..,h,-] l_r_',it,'ti,,n,__,l

I;-,,'..IR_ 7, _n,!iT/Hl,.i,i

VALVE OPENING FLOW CHARACTERISTICS

_._I_,"_,,_.iti,.n._.qu.d-p,.rv,.nt._"r,'lati,,n_,aml q_d.k _,p_'n,n;z. "l'h_",'h:n_r_vl_.ri.dl('.__It_-

"l'h,. lin,'_r an,! ,lui_ k-,,,..rli_ _,d_,'- ,n," w,-ll ,l_',_':i},_'d b_, the'Jr ,l*'finiti,,n Th," qui,.k-

-l..nm,, _!_.,. i-_ _,I_. h,,.,'ar in lhe i_ili_l ._ta_.,'_ ,,l,,l-.ni_m Th,. eq_,al-l.'n'*'nl:_e _'har.wleri_-

ti_ i.-. :,.,re- ,.,,,_l,h_al_.d. _"m_,'i,dl* _ilh re_l.'_'t l,, the m_ith_-_;:dti_'al d_"('ripti,_n ,_i' tile

_'hara_leri_ti_' ,'urn,'. The imp_,rtanl di|T.'-ren_'e ,|i._tingui._hin_ lhe _-quaJ per_',..l_- lr,,m th,"

line:.ir i_ lhat the- per,,.tH ,'hdt_e i._ ba._',l .',n lhe initial _ai_e ,,f ll,,w _'apa_'ity ll..for,, the

cha,_-, whi,'h i_ _ _a_iable) r_,lhe.," lhan lh¢ l'ull_ ,,p_'n fh_w ('apa_-itv _whi_'h i,_ -a_._,nst:_.nt. C,._.

dC

,,I pn_p:,rli,,nal_Iv _l,-lwml¢'nl ,_r_ .,_m," inilial p,_inl ,_n lhe _'t_r_e. _'h _ _alv_- will r_ev_'r ,.'I,,_"

,,.mpl,.i,.l_. _,, lha_ pr,,_i,,d ,l,'.-,ig._ _,_,._dl_ m,',,rl.,ral," a .h,,_,Ider ,,n th," phL'-' I,_ pr.vid."

quitk ,_,_,'_m_z at,,.! ,'!,_,_in_ :_'a_ the f,Jlb. ,h,_',l p,,.qti,,m l'h," f_,,inl ,,[ mterrul_li_n ,,f _h,.

il'h.. _I,,,_.' _'qu_:_i,,n i- ._ -implii]_',l _'r..h,_ ,,I thal al_l.'_.nn _ in _[i. ]l).l. The p,,_ili,,_;-

' 10.2,-,i

_l_-r,' L,.r_,' at_,l la_,l _'i_an_.._ i_ valve th,w ;'al_" mu_t be aw,ide'd. [Plu_ exl,'n._i_,ns <'_m be

-_halw, l I',, pr,,vi_l_" a vari,.Iv _I' ,'h_ra_'t_'ri,_ti__ _l_'l-'n,li_g ,,n lhc appli_'ali_,n. The di_pL_'_'-

111t'rll ,]_'|,_._|,lenl (,,! _;). v_hi_'h lik_ _'.',. i,, ba_e_l ,,n the im',m, pre_ible "_dler fl,,w te'_t, mu_t b_"

"ul,m.h',l r,,lh," ,',,n_id_'r,lti_,n., ,,,_tlin.,-_l in lhe fir._l ._e_'li_,n ,_I" th_._ ('hapi_.r wh_'n ai,l)lit_d I,,

,,,rnl_r_',_'_ible" l'_'lelir._l_.lir ' _v._t_'rn_.

PRESSURE REGULATORS

Description

tr,,l_-'_l pr_'-_.-_r_ .... ur(," ,,f _ i'r,,m a hi_zher. _ari.._bl,- l;r,'._ure _o_ir('e. ,_e_l_l_.l,_r_ ,.z-'nerally

_27
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{['l'fl(i tr[(l\ _,F rgl_ll'l¢F._,qlF, Itq _'t¢_ 'FtIP _¢ '¢;!i _';_11'¢_\_. \7),

el.sine, forve Cm the restricting eJern,'nI prou.rti.nal t. the outlet pressure, u_-u:dl_ !_ apl-d',-

ing lhe outlet pres._ure t_, a :tem-_'onne_ ted _fiaghragm ,,r pis_m The i_u._din_ U.,'mee.t

produ('es a _alve-_Lt)ening t,;t('.., on the resi'ri(.tin!_ element that -pp,,-_es the f.r,.e .f the mea_ur-

ix_ e!em."m, usually by means ,.,f a,_ '-tdjustabte spring or t:,y :. diapbramn ,,r piston pressurized

t'r-m a separate sours:e. 1;'_;_ s|ea,'ly-il_w operation ;trot gt :n,_li,,nle_._ reslri_'tin_.' element

iplug and s:eml, the forces of the r:-eas_Jri_,g and loading e ellleflly, rnust b0.1__ll,'e. In a given

al_plicathm, d_e loading fi,rce is held ('ollstarit al' a value dependenl on _he desired ,utlet

pressure. .% change in ,,utlet pressure unbalarwes the fim'e_ flaereby rausir'g v;.t_,:e-slerll

nmtio _. The stem motion is always in lhe dire_ti_m thai ",_i}t _'ause c,,rrerliw- changes in

_he fi,,w restriction a_s required to re! urn thv outlet pressure t,, the for(,.-bakmcing set prt.ssure.

F|ow Characteristlts

The fully open tl,,w charae|eristics ,_f pressure regulators are very similar 1,; that .f ,,'her

futly open valves. ',uch as sh,_vn in figure 21.3 in terms of a _zeneral owapressible flow param-

eter and the pressure r_t;,, _:ith fixed upstream eondith, ns. the operatit_g line is ideally

vertical as simsn, depicting the full range of mass fl,:_w rates possible with the e-nstant.
re_ulaled d,wnslream pressure. _;,hen lhe up,.,,lream pressure char_ges, ar, d/.r _l_en lhe

outlet set pres:,t_re i_ chan_ed. _he vertical operating ihte is ._hit'led to the lef_ or right

acvordingly.

tO:

| i I I _ ,2"' \-

50

, . .......2>>

0 [
0s 1

la2 PI

Figure :_ 1.3. Presshre re zul,at.r flow chara{leris:i,..,.

(_ha++g,'- it+ upstreatn pres_ur." van have a ,,t'r,_ drastic el:fe<t _m the l|t,x+ rapacit) .f _t

regulat,_r, e_l,'<'ialJy if th," ,mth.t [ir_,:qSlll_,. requir_.ment b. held (rl_[l_'tbl][|[. F'()r eXamldV.

if r.he upstream prvssure _, reduced whil,- all .th,,r quantities arv h,,ht _.,_llslatt!. t._th the

gem'ralized th,w parl.1_,ter ;I11_! t_]_' pl-_....stll-9 Iati_ ,are irl,,re:_se¢[ b,q,au:.e ,,f I[}1_, in_hld,',l

1.'2_



¢,,_I/P;#.',,F'D r. _4 1/ t_,/4t,','A,

P, h,rp._. Th_.n'|,_re, the ,q)cr:flln_ p,,iflt w,,_,.- lip .|fl,h h, t}l, lid.h! lr_m: l}.',' _IvH'l:li ,q-'; .,t!v_:'.

pq,izfl. ,rod b-lh ,'h_m_e_ are Jn (b':l:re,ti, m ,d mcre_l_m;: ;.'ru,,l_h,_,. ,,1 rid',_ ,_l).'t; q.*t u.j;_

'I',_ ilhJ,J, rdl.h at thP it6ti.d ,_pet'_flill_ p-ml :_ ,,f i11_- h_p.ltw:ir.,! h._!ll,_f,,: ,_t t_.,_,un, ->| _.

/_, - t)tll_ |)-_i:L _.t'l prr.,_..ure p.: :. :_l'll)tl f)._,l, _,r_,| rh,. ft.v.r.th, u,,r,"e-;p,,a_dirl!.' _!lh _ ,..ihd. ,,t

the fio.,._ p_r;lnll-h-.- ,,f ::_t). Tb.n. it'/,_ i_ r,'d,.'ed r, .tlllll I" ": _it}_ .n,'h tr_,.,i tI.,_ ,..I ,,th,.t

tlp_[rea|ll v,,nditbu... _h:" ,_,._a .t)cr:lli_K l,,,it¢ -_'(,l,"., :H a l]wn pdr,in_,'h'r _,_!,ne ,,I :_ .*n,l

t':,t_ = ll.:,_. !'tit' _'l_;ul_r m ip,qrram pr-._ure h,_.* (':m._c,t .I ,'|_,,o_," it, It,,_ c,,tidilb,u-

|'r,_ln ._:_ !)erc(.tll ,,t ('.ll).l('il._ ll_ (_0 pt.rl't'lll ._! c;;p,h'itv, .tlth,,u,_'h lb. tn:l._._ t/,,_ !,.fie i._ _,,I-

c}l;4nped. _"llrl}ler redtlchq,Ti it) /_ h, 5_'_,3J{ p'4id rt'..;ll!l's ill dn ililpt,_ :!}tll _' ,,llei-.l|ill_ poilll I.'_ _.

which k be,-,nd the- r_:,Jat,,r ('_tpadlv. l ],v)_rqu,'nt!_,. it' Ih," vn'.u_,_ tt,,w t_lh. _:....lvll ,.;..

l_,ine._| al !h," .rigin_l value, the r..al .p,_r_lhl_ p,,ml ,3_ will ,,c, _:r .n the h=liv ,,I-'n line. ,rod

lhe unregulat¢'d value -f P_;I_ = O.t',.5 _ill n._u!! h_ Ih," ,lefi_ lent _,;_llel t_re-_sun-" ,,!

: "2 lh: 1,,+i_

"l'hr verth'al _,peraling li.," v,fi_h_ I.' filh'd t',,r pr.tclical ,h"_il_n_.. _l...-h,,_ n b_ I1".' da.-,hed

Ib;es in hgur.- 21.2,. e'q.','i_db *_b'n the I,,a, bi;.' ele/ut-/t( c,,n-.i,qs ,,| ;I -.l_rirlg. "]'he .,prill;_,.

t',,r¢'_" will decrease ;is It,(. v_dvt, ,,pe,,._ .,l ;t rll,. depetidt.tfl ,m t.h," spritlg _',,r,_.t_l,ll. Tt,i,

will cws:. !lit- .ullet llrt'_q,re. I,_ dt._'rt.d-.t. "._itl, i,_, re I..i,l_ ittl_cv ;.llld lilt' .i;o'r,ti,_,_, i:l.'- t_ ill

•-,l,,p(. sli_z|lt!y h, th,' lett.

Regul:fl-r_. ,_| pr;.It'li(';ti d¢.sll_rl _fle_ ,'xp,.rie., :. a -_Knifi__m; ,tm,,_ml ,,f lr;(tbm trt lhe

m.fir,_ eh'mt.uls whi,h causer the ,,p.H,i_ llt,," l,,, ';i.q i- a d,'..ll,_md ,,t I,,,.._!bb. pr,..,,-urt.

rati.._, ._s d(.l,i(tcd i_ ill,. t_,, ,l,.h,.(| Ih,,,- in ii_lll',. 21 _ ill,, i',, Ih,P ll;-I,'q'-i--|ll,t" ,:t II,,IL

t:{e.,2tti_,l,_r.; ,,! l,a('li('al dm.ign are ,,fh'l) .n.;t,d_!e :t._ _.t., _. [, ;, i!,,;., t li,' _',,,Idilz,,n-_ t,', {_';_t.

the v:,]_,' plu_z (]_,clltt'r_ lg;lil_Sl ;lit .eat. ]he 31ti,)l, is r;.l!,S(..i ;,_ .i '.;-:.,.lit,! It,hi pr,'--I:re

puis_'s i_'_t,hing t'r,,m _n:_(l_crl,'l,! c,,ml,l_-_' rl-sme -! lb, _,d'._,. t,,it,,;,,,I !,_ ,'_,'--h,'

teb_,m.t. ;_,t _,, f,,,th. _;hilc l,t_e r.g, llah,;" ilunl- li_e d,'.;ire(I. I..ldi,':dl} -h!ll p,,-iti,,..

Flow Capacity and Sizing

I)elrrmining the fl, n, ('@{,,'il_ .rod lh,, -izin_: prt'_-,,re re,,_'ut_a,,rs i_ II,'g ,_c,',,:_qdi-i,o',t

using the vari,)us n)arluf.:l('lurers" ,.izing ,.'hart,.. gn(',' d,'_i_,,s Vit[_' .i,lcl_. -ul,t lilt" ,lU,,h.d

fl_,_ ,.ei'fi(ienls are ti(fl ,;t;u:dardiz._'d..,,r (h'fin¢'d ,dequah'ly,. The t'i_;,rt- ,.,n i,," ,,l:lt.r,.d

al !he hight, st ft.,.. (ai)_,"il y expected (hi_he.t fl,,_ rah" ,rod d,,v_,,._tr,.a,n pre'...re. :tn,t I,)_,._l

,tpstre{m, press!in- c,,t_d)inali,m) 1,, identify the n.)del _md ,,ritice qz,- r,'quir,'d t,_r tip p.,r.

titular appti(:,_ti,,n.



CHAPTER 22

APPLICATION OF THERMODYNAMICS OF PRESSURE VESSELS

TI." _._I_._,_ ,,f H." th,-rm.dyn:lmh" h_hdvi,,r ,,f _ _',,nlain,-r -f _a_ un,|eri_-iu_ _ <'h3r_mg

,r di_(-h_r_in_ pr,,.','.-+ i._ v_uall_ h._._*',! ,m an _,_._umpti,,,I ,,f n,, ht.at lr_n._fer. "l'hi_ _implihed

pr,.-edurt- yi,-Id.., d('(-llr,'tt+ rP_ult-_ ,,nI_, when thr pr.i','_ i_ rrlati,,',-Iv t,z._t. ,_hu-P ti." thrrm,,-

,|ynami(" pr-_'P_._,*._ alv, a_,._,'3u._' zPml_,ra_tlr_ _'hanl_'s and. th_.rPl'.r_', trrnp_-ralur+- _|i|}'_rem'_-._

an,| hea! tran_t,Pr, P_,rau._" of tl',_" ,_h,,,t lime. inter.v_l _,t' t',z_! pr-r'_, the h+,;d Ir+zn_l'_.r

_ _ <,,,n_,id_.r_lt,lv m-r," , -mi)li_',_tP,I. ,m,t ,'l,,_-,t au;d_ti-'_l ,-,lul,,,u_ ,':lu h,- ,,htdm_'d ,,ul_

t',,r .41,.',,ti_' .implit_,_d ,'_,.,-_ \.r._.r,+.d ...lut.,n.._rP p,,_-it, l,,. -f 4'-.r_+'. t'-r t|_t. u,,nlm_'_lr

,lifl'+'rt'ntl,tl _'(I11clfi_,11_ ill_,,Ivi_'l_ ,;;_ri:_td_" fl,,w r;itr'_, w:dl t+-ml..r:,tur,.,_. ,"(h'rn,tf !_,al lr_m_lrr

lr_)m ;Iml_i_.nt l+'Ull_Pr.llzlr,'..intl .., f,,rlh. I,z _,-m-ral. Ih,* ,ilzal'_ -a_, _ill I.. t,a_r,! ,mth+" pt-rlt'<'l

]+lit" b:l_l(' |)l",,r',, ,I,'_++ri|,in_ H.' pr,.,'-_,'-, ,,t |._,.u111:Jli "-pr_-_,_u_, .... ._._,-I. i_ ItIr tirol law

,,l' t|,+'l'Vti..|;v1.trl,h'._ J.- .i:q._lh'+l v+, ,,pt'tt .+_,'.t_"trv1.. "l'l.+ cvi,_]+li(':'+l ,h.+,.h,l,tw,.ut,+ ,,f +',lll:.ilil,vl

_+ ;:,_ l_'h I I ,'._. It," .q,plirJ _,, Dr,;,lu_+" th+" f, tl[,,w!._ +'.+'t_+ +'+l_,;tti,._,

11_II

L

ADIABATIC CHARGING

_(i,l|_+Ith' 4'|I,+iI_|11" +'+J1t l'++"_t.+-,11mt'+l ,,ttl_, +,,h_.t, th+- pr,,+'+',_,, +.',itr'. ,,+,-r ,i -h.rt +itt+r

int+'r+_,t *,, tllzll If+*" int,'_r;il+'d h,'_,t lr_n-+l'+'r will h+" h++.-;i_mfi+'ar, t iti _pih..f _|_+, t,'mp+.ra_.r+.

,|it]Pr+'nl't'_+

Evacuated Receivers

l"+,r _ll|l:lll;_ti(' ('[+l_+tr_in_ +_I rP,+:-iv+'rm. ,uitialls ,.va,'ll_+_lh--d. with ,t -,,,ur,',. ,,I _a+ haviu_,

t-,m-lanl h,, i.. ,'tlm_t',,_ Ill. I_ van l.' ._implilG_'() :zr.| irzl+-_rat++'_| l+, pr,,+hl_'P

,_- t+,;It f+,r , +_h,ri+'_dl+ p+'r+/_'_'! Iz,J_+'++

T: :, r, ....

IiI_I



fJ|II'A't";_ Z_ +.1_ II I%lJ_,_,_.

IIIql

",,t"'"i .... "'1

,!I, i. ,I,,t,._,,rth_ tl .+ t|.. ,.,,f,,.tl,lt.d _.i- h.l_,p,'r.ll_lr,' ,- _r+-it,.t I}l,t:t l[,,- ,.I,ltr_n_ .t l..:.l.,l|i,,n

|.'ltl|,t'l,l|Ill'_' b_ th*', ,,ll-|;ll|| l,l,'|,_r _.

Partially Filled Re¢eiver_

t'l|lb.ltiall| t I ] • I I rL"(|_lq'l"_ dm(I mte'_r.:lle'-, h, |_r_,dll, _"

_i'lqJ (,,r l.,rl+-+'l .,_.,+..+.

,llld

K , 11' , h,, ,. -- ..:

:r,- 7"_ 1/.:
I/,

[-/L /-,p, r;)

! I I h/_1

i_ i .-'_,1

l+i,lU._th,t_.+ +I l.m .ti_,l +I 1.7'_ .zr+- ph,vl,-d l,,r ,._,ri,+t_- _,,,I_+'.+ ,,f ]+ m ti_z+r+*._:.+>_.!+hr,+u_h Z'3. I..

I'+,_ :h+" +,i,,'+_ d ,':,-," ,,_,h,.r+" th,. ,.nterln..l., _,.i. te._,i|.'Ht_Ir," e'_|ll,l!: "+, +'}1<+' it:,lt II l+'itzl+"r:lttlr+'

,4th,. -.t,.r,.d _,,-
P,

/', p.

l+_,l_.,t+,,_, ' I Ii_lll I_ _,+1111|("II ill _i_llr('" ...._+ -_ l*,t ,.+m,,u. ++_d_'+ ,,t._. Th,..,-_,+,,idl,',l r+'l,tti,,v,_hil,

i_l_ -t,,t,',l ma..- +- , ,k,',, Ir,,n_ t+_r,'..+ +_. I thr,,,_h "'."-+.I+ n-+m,, lh+. ,'_Ir_,-', l,,r +7"., "I+_) I

NONADIASATIC CHARGING

h++'n tht" _'|_ lr_it+:,.c. T,r,,4'+'"+- ,_'<'vlr- ,,_,,'r J .+.i_r+i,+i, _nrlt lHtle +l+t,'r'+,_nl. tl_t. h,._tt +'xr|_tn_

-h,,,lhl n,,l b," _,._I,.+'_+.,I.._,_,I ,.,lU+m,m _ I I. I _ m,_.t b,. _, ritt,.n in term- ,d .++tirl_+" r,,t+" ,|ill+'r*'nt;-d

+',l_i,lti,',t_. Thi. +'qll4li,m i. lh,.n ,',,ml,it_+',l _ith +u, ,-'n_-'r_v b+dan,',, t'q_l+lli,_.n lhat +h-._,'ril,+..+

the' ,,,nl;linm+ +.+'--+,.i. and _t,_ndard hm_t-lr_.tn..l+'r _',im_ti,,n_. "l'hi+ l,r,,du<',"- th+" l,,lh,',,,in_

t',++, .im,lh:m+',,,+-. ,lill+.r+.t_li_,l e,lUdti+,n+ +rilt,+'n in ditn+.n+i,_d_.....+ f:,rm

dT ,
.,._.I,++., )-_,_r.-r.,.,+,,+,T.-_.r .... .+ ,_, tt].l;l

I..+,2

L ,.-If.+
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'_,diM,ati|' rharging of a p_rliallv filled ,,+'s_el, k := 1.2.

_i L:X+;ti-__ .2i i++; ]_+
-+-'_ _ --+-++--<-._++__+_

-_+iTTi r++, ....

+ , __+ ++_+_

+" _+_T +,Tit
i _ "1-'J::i,_ _ ]LLJ- 6
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Isothermal Charging
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Charging at Constant Mass Flow Rate With Heat Transfer to o Constant Temperatuce Container
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A - Side of rectangle B = Side of rectangle

Figure A.2. }]ydraulic diameter ¢,! rectangular pipes. ](.'l_urteK', of ])est{_'n .'Vel_'s j

._ re¢'_angular pipe'_ equjvalent hydraulic diam- Tht' n,m¢,g, ram solves the equati,,_:

eter. D,. i.,. I times the hydra_dic radius:
2AB

/eross.secti,mal a "ea 4 + B

/_'. = I. l,--_i;,t_di;_ririn_._,r-/) Itboil, 4 and R are multiplied b_ %. then D, mus,

als,_ be muhiplied by V.

.4B . F_ample: "X'hat is the equi_,ale'nt hydraulic=4 ii i ;-_) diameter _f a pipe having ::,ides -f _l apd 3i}?

Sol,tion: t.line _10_61 with II(h_3t and read

•¢,here .t and B are the iv,(, dimensi-ns D,.= (10) t4) = ,_./.

.1-()¢)
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The nomogramrepresents the equation:

V =(0.001082)(D 2)(L)[_. (4k
---- /L2

_-k-k 2 -arc sin ('_- _() ]

Example.

What is the capacity of a flat-
ended, 6-foot diameter, 5-foot

long tank filled to a height of
9 inches?

Figure A.3.

Solution

V =76.3 galr
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